2 resultados para Small perturbations
em Aston University Research Archive
Resumo:
We have recently proposed the framework of independent blind source separation as an advantageous approach to steganography. Amongst the several characteristics noted was a sensitivity to message reconstruction due to small perturbations in the sources. This characteristic is not common in most other approaches to steganography. In this paper we discuss how this sensitivity relates the joint diagonalisation inside the independent component approach, and reliance on exact knowledge of secret information, and how it can be used as an additional and inherent security mechanism against malicious attack to discovery of the hidden messages. The paper therefore provides an enhanced mechanism that can be used for e-document forensic analysis and can be applied to different dimensionality digital data media. In this paper we use a low dimensional example of biomedical time series as might occur in the electronic patient health record, where protection of the private patient information is paramount.
Resumo:
It is well established that hydrodynamic journal bearings are responsible for self-excited vibrations and have the effect of lowering the critical speeds of rotor systems. The forces within the oil film wedge, generated by the vibrating journal, may be represented by displacement and velocity coefficient~ thus allowing the dynamical behaviour of the rotor to be analysed both for stability purposes and for anticipating the response to unbalance. However, information describing these coefficients is sparse, misleading, and very often not applicable to industrial type bearings. Results of a combined analytical and experimental investigation into the hydrodynamic oil film coefficients operating in the laminar region are therefore presented, the analysis being applied to a 120 degree partial journal bearing having a 5.0 in diameter journal and a LID ratio of 1.0. The theoretical analysis shows that for this type of popular bearing, the eight linearized coefficients do not accurately describe the behaviour of the vibrating journal based on the theory of small perturbations, due to them being masked by the presence of nonlinearity. A method is developed using the second order terms of Taylor expansion whereby design charts are provided which predict the twentyeight force coefficients for both aligned, and for varying amounts of journal misalignment. The resulting non-linear equations of motion are solved using a modified Newton-Raphson method whereby the whirl trajectories are obtained, thus providing a physical appreciation of the bearing characteristics under dynamically loaded conditions.