6 resultados para Small bowel bacterial overgrowth syndrome
em Aston University Research Archive
Resumo:
In coeliac disease, the intake of dietary gluten induces small-bowel mucosal damage and the production of immunoglobulin (Ig)A class autoantibodies against transglutaminase 2 (TG2). We examined the effect of coeliac patient IgA on the apical-to-basal passage of gluten-derived gliadin peptides p31-43 and p57-68 in intestinal epithelial cells. We demonstrate that coeliac IgA enhances the passage of gliadin peptides, which could be abolished by inhibition of TG2 enzymatic activity. Moreover, we also found that both the apical and the basal cell culture media containing the immunogenic gliadin peptides were able to induce the proliferation of deamidation-dependent coeliac patient-derived T cells even in the absence of exogenous TG2. Our results suggest that coeliac patient IgA could play a role in the transepithelial passage of gliadin peptides, a process during which they might be deamidated.
Resumo:
Celiac disease is characterized by the presence of specific autoantibodies targeted against transglutaminase 2 (TG2) in untreated patients' serum and at their production site in the small-bowel mucosa below the basement membrane and around the blood vessels. As these autoantibodies have biological activity in vitro, such as inhibition of angiogenesis, we studied if they might also modulate the endothelial barrier function. Our results show that celiac disease patient autoantibodies increase endothelial permeability for macromolecules, and enhance the binding of lymphocytes to the endothelium and their transendothelial migration when compared to control antibodies in an endothelial cell-based in vitro model. We also demonstrate that these effects are mediated by increased activities of TG2 and RhoA. Since the small bowel mucosal endothelium serves as a "gatekeeper" in inflammatory processes, the disease-specific autoantibodies targeted against TG2 could thus contribute to the pathogenic cascade of celiac disease by increasing blood vessel permeability.
Resumo:
Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset.
Resumo:
Rainbow trout eggs Salmo gairdneri, Richardson, were incubated under a range of different environmental conditions. Recovery of bacteria from egg surfaces revealed that increased water temperature, slow water flow rates and high egg density all significantly increased egg surface bacterial populations. Live eggs were mainly colonized by Cytophaga sp., pseudomonas fluorescens and Aeromonas hydrophila. In contrast, dead eggs supported considerable numbers of fluorescent Pseudomonas sp. Analysis of potential nutrient sources for bacteria colonizing live egg surfaces revealed that small amounts of amino acids, phosphate and potassium may be lost by incubating eggs. Subsequently these nutrients were shown to be capable of supporting limited bacterial growth and reproduction. Dead eggs `leaked' increased amounts of the above nutrients which in turn supported higher bacterial numbers. In addition, biochemical analysis of eggs revealed amino acids and fatty acids that might be utilized by bacteria colonizing dead egg surfaces. Assessment of adhesion properties of bacteria frequently recovered from egg surfaces revealed high cell surface hydrophobicity as an important factor in successful egg colonization. Analysis of egg mortalities from groups of rainbow trout and brown trout (S.trutta L.) eggs maintained under two different incubation systems revealed that potentially a close correlation existed between egg surface bacterial numbers and mortalities in the egg during incubation. Innoculation of newly-fertilized eggs with bacteria demonstrated that groups of eggs supporting high numbers of P.fluorescens suffered significantly higher mortalities during the early part of their incubation. Exposure of incubating eggs to oxolinic acid, chlortetracycline and chloramphenicol demonstrated that numbers of bacteria on egg surfaces could be significantly reduced. However, as no corresponding increase in egg hatching success was revealed, the treatment of incubating eggs with antibiotics or antimicrobial compounds can not be recommended. In commercial hatcheries bacteria are only likely to be responsible for egg deaths during incubation when environmental conditions are unfavourable. High water temperatures, slow water flow rates and high egg density all lead to increased bacterial number of egg surfaces, reduced water circulation and low levels of dissolved oxygen. Under such circumstances sufficient amounts of dissolved oxygen may not be available to support developing embryos.
Resumo:
People with vision loss sometimes experience visual hallucinations associated with Charles Bonnet syndrome. The appearance of these hallucinations often causes anxiety for the sufferer and can be difficult for the attending eye care professional to manage. A review of the literature highlighted a range of visual, pharmacological and social management regimes that may alleviate these hallucinations, albeit using small samples in uncontrolled trials. Eye care practitioners should be aware of methods of rehabilitation in Charles Bonnet syndrome that may lead to resolution of the visual hallucinations.
Resumo:
Bilateral Perisylvian Syndrome (BPS) often presents with epilepsy and significant behavioral impairments that can include mental retardation, dysarthria, delayed speech development, and delayed fine motor development (Graff-Radford et al., 1986 and Kuzniecky et al., 1993). While a small subset of BPS cases have been described as having relatively isolated language delays (Leventer et al., 2010), BPS is not expected in children with dyslexia. As part of a Medical University of South Carolina, IRB approved multi-site study involving retrospective and de-identified dyslexia data, we unexpectedly identified a 14.05 year old male with evidence of BPS whose father had been diagnosed with dyslexia and dysgraphia. This child had been recruited for a neuroimaging study on dyslexia from a school specializing in educating children with dyslexia. The T1-weighted MRI scan from this child demonstrated a highly unusual perisylvian sulcal/gyral patterning that is a defining feature of BPS (Fig. 1). BPS cases exhibit bilateral dysgenesis of the Sylvian fissure and surrounding gyri, which appears to occur because of a limited or absent arcuate fasciculus (Kilinc, Ekinci, Demirkol, & Agan, 2015). This BPS case also had a relatively enlarged atrium of the lateral ventricle that is consistent with the BPS anatomical presentation and reduction of parietal white matter (Graff-Radford et al., 1986, Kilinc et al., 2015 and Toldo et al., 2011).