16 resultados para Slender beams
em Aston University Research Archive
Resumo:
A theoretical analysis of two-wave mixing in a BSO crystal is developed in the undepleted-pump approximation for a modulated signal beam. It is shown that, for a modulation of high enough frequency, significant ac amplification is possible at three distinct values of pump-beam detuning. A signal beam that is amplitude modulated by a square wave is analyzed by means of the theory, and experimental results are presented in confirmation of the analysis. Finally, it is shown that in the presence of absorption the optimum detunings for dc and ac amplification are different.
Resumo:
This thesis examines experimentally and theoretically the behaviour and ultimate strength of rectangular reinforced concrete members under combined torsion, shear and bending. The experimental investigation consists of the test results of 38 longitudinally and transversely reinforced concrete beams subjected to combined loads, ten beams of which were tested under pure torsion and self-weight. The behaviour of each test beam from application of the first increment of load until failure is presented. The effects of concrete strength, spacing of the stirrups, the amount of longitudinal steel and the breadth of the section on the ultimate torsional capacity are investigated. Based on the skew-bending mechanism, compatibility, and linear stress-strain relationship for the concrete and the steel, simple rational equations are derived for the three principal modes of failure for the following four types of failure observed in the tests: TYPE I Yielding the reinforcement, at failure, before crushing the concrete. TYPE II Yielding of the web steel only, at failure, before crushing the concrete. TYPE III Yielding of the longitudinal steel only, at failure, before crushing the concrete. TYPE IV Crushing of the concrete, at failure, before yielding of any of the reinforcement.
Resumo:
Reported in this thesis are test results of 37 eccentrically prestressed beams with stirrups. Single variable parameters were investigated including the prestressing force, the prestressing steel area, the concrete strength, the aspect ratio h/b and the stirrups size and spacing. Interaction of bending, torsion and shear was also investigated by testing a series of beams subjected to varying bending/torsional moment ratios. For the torsional strength an empirical expression of linear format is proposed and can be rearranged in a non-dimensional interaction form: T/To+V/Vo+M/Mo+Ps/Po+Fs/Fo=Pc2/Fsp. This formula which is based on an average experimental steel stress lower than the yield point is compared with 243 prestressed beams containing ' stirrups, including the author's test beams, and good agreement is obtained. For the theoretical analysis of the problem of torsion combined with bending and shear in concrete beams with stirrups, the method of torque-friction is proposed and developed using an average steel stress. A general linear interaction equation for combined torsion with bending and/or shear is proposed in the following format: (fi) T/Tu=1 where (fi) is a combined loading factor to modify the pure ultimate strength for differing cases of torsion with bending and/or shear. From the analysis of 282 reinforced and prestressed concrete beams containing stirrups, including the present investigation, good agreement is obtained between the method and the test results. It is concluded that the proposed method provides a rational and simple basis for predicting the ultimate torisional strength and may also be developed for design purposes.
Resumo:
The research concerns the development and application of an analytical computer program, SAFE-ROC, that models material behaviour and structural behaviour of a slender reinforced concrete column that is part of an overall structure and is subjected to elevated temperatures as a result of exposure to fire. The analysis approach used in SAFE-RCC is non-linear. Computer calculations are used that take account of restraint and continuity, and the interaction of the column with the surrounding structure during the fire. Within a given time step an iterative approach is used to find a deformed shape for the column which results in equilibrium between the forces associated with the external loads and internal stresses and degradation. Non-linear geometric effects are taken into account by updating the geometry of the structure during deformation. The structural response program SAFE-ROC includes a total strain model which takes account of the compatibility of strain due to temperature and loading. The total strain model represents a constitutive law that governs the material behaviour for concrete and steel. The material behaviour models employed for concrete and steel take account of the dimensional changes caused by the temperature differentials and changes in the material mechanical properties with changes in temperature. Non-linear stress-strain laws are used that take account of loading to a strain greater than that corresponding to the peak stress of the concrete stress-strain relation, and model the inelastic deformation associated with unloading of the steel stress-strain relation. The cross section temperatures caused by the fire environment are obtained by a preceding non-linear thermal analysis, a computer program FIRES-T.
Resumo:
We report on recent progress in the generation of non-diffracting (Bessel) beams from semiconductor light sources including both edge-emitting and surface-emitting semiconductor lasers as well as light-emitting diodes (LEDs). Bessel beams at the power level of Watts with central lobe diameters of a few to tens of micrometers were achieved from compact and highly efficient lasers. The practicality of reducing the central lobe size of the Bessel beam generated with high-power broad-stripe semiconductor lasers and LEDs to a level unachievable by means of traditional focusing has been demonstrated. We also discuss an approach to exceed the limit of power density for the focusing of radiation with high beam propagation parameter M2. Finally, we consider the potential of the semiconductor lasers for applications in optical trapping/tweezing and the perspectives to replace their gas and solid-state laser counterparts for a range of implementations in optical manipulation towards lab-on-chip configurations. © 2014 Elsevier Ltd.
Resumo:
We demonstrate that an interplay between diffraction and defocusing nonlinearity can support stable self-similar plasmonic waves with a parabolic profile. Simplicity of a parabolic shape combined with the corresponding parabolic spatial phase distribution creates opportunities for controllable manipulation of plasmons through a combined action of diffraction and nonlinearity. © 2013 Optical Society of America.
Resumo:
In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations.
Resumo:
Optical manipulation of microscopic objects (including living cells) using Bessel beams from semiconductor lasers has been demonstrated for the first time. In addition, it has been found in the experiments that a Bessel beam of sufficient power from a semiconductor laser makes it possible to manipulate simultaneously several microscopic objects captured into its central lobe and the first ring. © 2014 Pleiades Publishing, Ltd.
Resumo:
The focusing of multimode laser diode beams is probably the most significant problem that hinders the expansion of the high-power semiconductor lasers in many spatially-demanding applications. Generally, the 'quality' of laser beams is characterized by so-called 'beam propagation parameter' M2, which is defined as the ratio of the divergence of the laser beam to that of a diffraction-limited counterpart. Therefore, M2 determines the ratio of the beam focal-spot size to that of the 'ideal' Gaussian beam focused by the same optical system. Typically, M2 takes the value of 20-50 for high-power broad-stripe laser diodes thus making the focal-spot 1-2 orders of magnitude larger than the diffraction limit. The idea of 'superfocusing' for high-M2 beams relies on a technique developed for the generation of Bessel beams from laser diodes using a cone-shaped lens (axicon). With traditional focusing of multimode radiation, different curvatures of the wavefronts of the various constituent modes lead to a shift of their focal points along the optical axis that in turn implies larger focal-spot sizes with correspondingly increased values of M2. In contrast, the generation of a Bessel-type beam with an axicon relies on 'self-interference' of each mode thus eliminating the underlying reason for an increase in the focal-spot size. For an experimental demonstration of the proposed technique, we used a fiber-coupled laser diode with M2 below 20 and an emission wavelength in ~1μm range. Utilization of the axicons with apex angle of 140deg, made by direct laser writing on a fiber tip, enabled the demonstration of an order of magnitude decrease of the focal-spot size compared to that achievable using an 'ideal' lens of unity numerical aperture. © 2014 SPIE.
Resumo:
In this paper, we demonstrate, for the first time to the best of our knowledge, utilization of Bessel beams generated from a semiconductor laser for optical trapping and manipulation of microscopic particles including living cells. © 2014 OSA.