2 resultados para Skin ageing
em Aston University Research Archive
Resumo:
While knowledge about standardization of skin protection against ultraviolet radiation (UVR) has progressed over the past few decades, there is no uniform and generally accepted standardized measurement for UV eye protection. The literature provides solid evidence that UV can induce considerable damage to structures of the eye. As well as damaging the eyelids and periorbital skin, chronic UV exposure may also affect the conjunctiva and lens. Clinically, this damage can manifest as skin cancer and premature skin ageing as well as the development of pterygia and premature cortical cataracts. Modern eye protection, used daily, offers the opportunity to prevent these adverse sequelae of lifelong UV exposure. A standardized, reliable and comprehensive label for consumers and professionals is currently lacking. In this review we (i) summarize the existing literature about UV radiation-induced damage to the eye and surrounding skin; (ii) review the recent technological advances in UV protection by means of lenses; (iii) review the definition of the Eye-Sun Protection Factor (E-SPF®), which describes the intrinsic UV protection properties of lenses and lens coating materials based on their capacity to absorb or reflect UV radiation; and (iv) propose a strategy for establishing the biological relevance of the E-SPF. © 2013 John Wiley & Sons A/S.
Resumo:
Generally, we like to see ageing as a process that is happening to people older than ourselves. However the process of ageing impacts on a wide range of functions within the human body. Whilst many of the outcomes of ageing can now be delayed or reduced, age-related changes in cellular, molecular and physiological functionality of tissues and organs can also influence how drugs enter, distribute and are eliminated from the body. Therefore, the changing profile of barriers to drug delivery should be considered if we are to develop more age-appropriate medicines. Changes in the drug dissolution and absorption in older patients may require the formulation of oral delivery systems that offer enhanced retention at absorption sites to improve drug delivery. Alternatively, liquid and fast-melt dosage systems may address the need of patients who have difficulties in swallowing medication. Ageing-induced changes in the lung can also result in slower drug absorption, which is further compounded by disease factors, common in an ageing population, that reduce lung capacity. In terms of barriers to drug delivery to the eye, the main consideration is the tear film, which like other barriers to drug delivery, changes with normal ageing and can impact on the bioavailability of drugs delivery using eye drops and suspensions. In contrast, whilst the skin as a barrier changes with age, no significant difference in absorption of drugs from transdermal drug delivery is observed in different age groups. However, due to the age-related pharmacokinetic and pharmacodynamic changes, dose adaptation should still be considered for drug delivery across the skin. Overall it is clear that the increasing age demographic of most populations, presents new (or should that be older) barriers to effective drug delivery. © 2012 Elsevier B.V. All rights reserved.