6 resultados para Sivonen, Mika
em Aston University Research Archive
Resumo:
Ontology search and reuse is becoming increasingly important as the quest for methods to reduce the cost of constructing such knowledge structures continues. A number of ontology libraries and search engines are coming to existence to facilitate locating and retrieving potentially relevant ontologies. The number of ontologies available for reuse is steadily growing, and so is the need for methods to evaluate and rank existing ontologies in terms of their relevance to the needs of the knowledge engineer. This paper presents AKTiveRank, a prototype system for ranking ontologies based on a number of structural metrics.
Resumo:
In a Data Envelopment Analysis model, some of the weights used to compute the efficiency of a unit can have zero or negligible value despite of the importance of the corresponding input or output. This paper offers an approach to preventing inputs and outputs from being ignored in the DEA assessment under the multiple input and output VRS environment, building on an approach introduced in Allen and Thanassoulis (2004) for single input multiple output CRS cases. The proposed method is based on the idea of introducing unobserved DMUs created by adjusting input and output levels of certain observed relatively efficient DMUs, in a manner which reflects a combination of technical information and the decision maker's value judgements. In contrast to many alternative techniques used to constrain weights and/or improve envelopment in DEA, this approach allows one to impose local information on production trade-offs, which are in line with the general VRS technology. The suggested procedure is illustrated using real data. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Most existing approaches to Twitter sentiment analysis assume that sentiment is explicitly expressed through affective words. Nevertheless, sentiment is often implicitly expressed via latent semantic relations, patterns and dependencies among words in tweets. In this paper, we propose a novel approach that automatically captures patterns of words of similar contextual semantics and sentiment in tweets. Unlike previous work on sentiment pattern extraction, our proposed approach does not rely on external and fixed sets of syntactical templates/patterns, nor requires deep analyses of the syntactic structure of sentences in tweets. We evaluate our approach with tweet- and entity-level sentiment analysis tasks by using the extracted semantic patterns as classification features in both tasks. We use 9 Twitter datasets in our evaluation and compare the performance of our patterns against 6 state-of-the-art baselines. Results show that our patterns consistently outperform all other baselines on all datasets by 2.19% at the tweet-level and 7.5% at the entity-level in average F-measure.
Resumo:
Social media has become an effective channel for communicating both trends and public opinion on current events. However the automatic topic classification of social media content pose various challenges. Topic classification is a common technique used for automatically capturing themes that emerge from social media streams. However, such techniques are sensitive to the evolution of topics when new event-dependent vocabularies start to emerge (e.g., Crimea becoming relevant to War Conflict during the Ukraine crisis in 2014). Therefore, traditional supervised classification methods which rely on labelled data could rapidly become outdated. In this paper we propose a novel transfer learning approach to address the classification task of new data when the only available labelled data belong to a previous epoch. This approach relies on the incorporation of knowledge from DBpedia graphs. Our findings show promising results in understanding how features age, and how semantic features can support the evolution of topic classifiers.
Resumo:
In this paper we show how event processing over semantically annotated streams of events can be exploited, for implementing tracing and tracking of products in supply chains through the automated generation of linked pedigrees. In our abstraction, events are encoded as spatially and temporally oriented named graphs, while linked pedigrees as RDF datasets are their specific compositions. We propose an algorithm that operates over streams of RDF annotated EPCIS events to generate linked pedigrees. We exemplify our approach using the pharmaceuticals supply chain and show how counterfeit detection is an implicit part of our pedigree generation. Our evaluation results show that for fast moving supply chains, smaller window sizes on event streams provide significantly higher efficiency in the generation of pedigrees as well as enable early counterfeit detection.
Resumo:
The contribution of different-sized businesses to job creation continues to attract policymakers’ attention; however, it has recently been recognised that conclusions about size were confounded with the effect of age. We probe the role of size, controlling for age, by comparing the cohorts of firms born in 1998 over their first decade of life, using variation across half a dozen northern European countries Austria, Finland, Germany, Norway, Sweden and the UK to pin down size effects. We find that a very small proportion of the smallest firms play a crucial role in accounting for cross-country differences in job growth. A closer analysis reveals that the initial size distribution and survival rates do not seem to explain job growth differences between countries, rather it is a small number of rapidly growing firms that are driving this result.