2 resultados para Siple Dome
em Aston University Research Archive
Resumo:
Bedrock geochemical analysis, coupled with detailed data analysis, was carried out on some 260 samples taken from two areas of 'the Harlech Dome, near Dolgellau, North Wales. This was done to determine if rocks from mineralised and non-mineralised areas could be distinguished, and to determine mineralisation types and wall rock alterations. The Northern Area, near Talsarnau, has no recorded mineralisation, while the Southern Area, near Bontddu, has been exploited for gold. The rocks sampled, in both areas, were from the Cambrian Gamlan Flags, Clogau Shales, Vigra Flags, later vein materials, and igneous intrusions. All samples were analysed, using a new rapid, atomic absorption spectrophotometric technique, for Si, AI, Fe, Cu, Ni, Zn, Pb, Sr, Hg, and Ba. In addition 60 samples were analysed by X-ray fluorescence for Mn, Ti, Ca, K, Na, P, Cr, Ce, La, S, Y , Rh, and Th. Total CO2 was determined, on selected samples, using a combustion technique. Elemental distributions, for each rock type, in each area, were· plotted, and means, standard deviations, and enrichment indices were calculated. Multivariate statistical analysis on the results distinguished a Cu-type mineralisation in the Northern area, and both Cu and Pb/Zn types in the Southern Area. It also showed the Northern Area to be less strongly mineralised than the Southern one in which both mineralisation types are associated with wall rock alteration. Elemental associations and trends due to sedimentary processes were distinguished from those related to mineralisation. Hg is related to mineralisation, and plots of factor scores, on the sampling grid, produced clusters of mineralisation related factors in areas of known mineralisation. A double Fourier Trend Analysis program, with a wavelength search routine, was developed and used to recognise sedimentary trends for Sr. Y., Rb, and Th. These trends were interpreted to represent areas of low pH and reducing conditions. They also indicate that the supply of sediment remained constant over Gamlan, Clogau, and Vigra times. The trend surface of Hg showed no association with rock type. It is shown that analysis of a small number of samples, for a carefully selected number of elements, with detailed data analysis, can provide more useful information than analysis of a large number of samples for many elements. The mineralisation is suggested to have been the result of water solutions leaching ore metals from the sedimentary rocks and redepositing them in veins.
Resumo:
The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with an open-core gasifier, a novel open-topped throated gasifier was designed and used. A sampling system was designed and installed to determine the water, tar and particular content of the raw product gas. This permitted evaluation of the effects of process parameters and reactor design on tar and particular production, although a large variation was found for the particulate measurements due to the capture of large particles. For both gasifiers, the gasification process was studied in order to identify and compare the mechanisms controlling the position and shape of the reaction zones. The stability of the reaction zone was found to be governed by the superficial gas velocity within the reactor. A superficial gas velocity below 0.2 Nms-1 resulted in a rising reaction zone in both gasifiers. Turndown is achieved when the rate of char production by flaming pyrolysis equals the rate of char gasification over a range of throughputs. A turndown ratio of 2:1 was achieved for the hybrid-throated gasifier, compared to 1.3:1 for the open-core. It is hypothesized that pyrolysis is a surface area phenomenon, and that in the hybrid gasifier the pyrolysis front can expand to form a dome-shape. The rate of char gasification is believed to increase as the depth of the gasification zone increases. Vibration of the open-core reactor bed decreased the bed pressure drop, reduced the voidage, aided solids flow and gave a minor improvement in the product gas energy content. Insulation improved the performance of both reactors by reducing heat losses resulting in a reduced air to feed ratio requirement. The hybrid gasifier gave a higher energy conversion efficiency, a higher product gas heating value, and a lower tar content than the open-core gasifier due to efficient gas mixing in a high temperature tar cracking region below the throat and reduced heat losses.