13 resultados para Sinogram-affirmed iterative reconstruction

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate two numerical procedures for the Cauchy problem in linear elasticity, involving the relaxation of either the given boundary displacements (Dirichlet data) or the prescribed boundary tractions (Neumann data) on the over-specified boundary, in the alternating iterative algorithm of Kozlov et al. (1991). The two mixed direct (well-posed) problems associated with each iteration are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method, while the optimal value of the regularization parameter is chosen via the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point where the accumulation of noise becomes dominant and the errors in predicting the exact solutions increase, is also presented. The MFS-based iterative algorithms with relaxation are tested for Cauchy problems for isotropic linear elastic materials in various geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the proposed method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, three iterative procedures (Landweber-Fridman, conjugate gradient and minimal error methods) for obtaining a stable solution to the Cauchy problem in slow viscous flows are presented and compared. A section is devoted to the numerical investigations of these algorithms. There, we use the boundary element method together with efficient stopping criteria for ceasing the iteration process in order to obtain stable solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, an iterative algorithm based on the Landweber-Fridman method in combination with the boundary element method is developed for solving a Cauchy problem in linear hydrostatics Stokes flow of a slow viscous fluid. This is an iteration scheme where mixed well-posed problems for the stationary generalized Stokes system and its adjoint are solved in an alternating way. A convergence proof of this procedure is included and an efficient stopping criterion is employed. The numerical results confirm that the iterative method produces a convergent and stable numerical solution. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An iterative method for the reconstruction of a stationary three-dimensional temperature field, from Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. A convergence proof of this method in a weighted L 2-space is include

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An iterative procedure is proposed for the reconstruction of a temperature field from a linear stationary heat equation with stochastic coefficients, and stochastic Cauchy data given on a part of the boundary of a bounded domain. In each step, a series of mixed well-posed boundary-value problems are solved for the stochastic heat operator and its adjoint. Well-posedness of these problems is shown to hold and convergence in the mean of the procedure is proved. A discretized version of this procedure, based on a Monte Carlo Galerkin finite-element method, suitable for numerical implementation is discussed. It is demonstrated that the solution to the discretized problem converges to the continuous as the mesh size tends to zero.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An iterative method for reconstruction of solutions to second order elliptic equations by Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the elliptic operator and its adjoint. The convergence proof of this method in a weighted L2 space is included. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An iterative procedure is proposed for the reconstruction of a stationary temperature field from Cauchy data given on a part of the boundary of a bounded plane domain where the boundary is smooth except for a finite number of corner points. In each step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. Convergence is proved in a weighted L2-space. Numerical results are included which show that the procedure gives accurate and stable approximations in relatively few iterations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem considered is that of determining the shape of a plane acoustically sound-soft obstacle from the knowledge of the far-field pattern for one time-harmonic incident field. An iterative procedure is proposed based on two boundary integrals representing the incident field and the far-field pattern, respectively. Numerical examples are included which show that the procedure gives accurate numerical approximations in relatively few iterations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An iterative method for reconstruction of the solution to a parabolic initial boundary value problem of second order from Cauchy data is presented. The data are given on a part of the boundary. At each iteration step, a series of well-posed mixed boundary value problems are solved for the parabolic operator and its adjoint. The convergence proof of this method in a weighted L2-space is included.