60 resultados para Single phase system

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a design methodology to achieve optimal performance for a short-stroke single-phase tubular permanent-magnet motor which drives a reciprocating vapor compressor. The steady-state characteristic of the direct-drive linear-motor compressor system is analyzed, an analytical formula for predicting iron loss is presented, and a motor-design procedure which takes into account the effect of compressor loads under nominal operating condition is formulated. It is shown that the motor efficiency can be optimized with respect to two leading dimensional ratios. Experimental results validate the proposed design methodology. Copyright © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-volume capacitance is required to buffer the power difference between the input and output ports in single-phase grid-connected photovoltaic inverters, which become an obstacle to high system efficiency and long device lifetime. Furthermore, total harmonic distortion becomes serious when the system runs into low power level. In this study, a comprehensive analysis is introduced for two-stage topology with the consideration of active power, DC-link (DCL) voltage, ripple and capacitance. This study proposed a comprehensive DCL voltage control strategy to minimise the DCL capacitance while maintaining a normal system operation. Furthermore, the proposed control strategy is flexible to be integrated with the pulse-skipping control that significantly improves the power quality at light power conditions. Since the proposed control strategy needs to vary DCL voltage, an active protection scheme is also introduced to prevent any voltage violation across the DCL. The proposed control strategy is evaluated by both simulation and experiments, whose results confirm the system effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this thesis is twofold: to examine the validity of the rotating-field and cross-field theories of the single-phase induction motor when applied to a cage rotor machine; and to examine the extent to which skin effect is likely to modify the characteristics of a cage rotor machine. A mathematical analysis is presented for a single-phase induction motor in which the rotor parameters are modified by skin effect. Although this is based on the usual type of ideal machine, a new form of model rotor allows approximations for skin effect phenomena to be included as an integral part of the analysis. Performance equations appropriate to the rotating-field and cross-field theories are deduced, and the corresponding explanations for the steady-state mode of operation are critically examined. The evaluation of the winding currents and developed torque is simplified by the introduction of new dimensionless factors which are functions of the resistance/reactance ratios of the rotor and the speed. Tables of the factors are included for selected numerical values of the parameter ratios, and these are used to deduce typical operating characteristics for both cage and wound rotor machines. It is shown that a qualitative explanation of the mode of operation of a cage rotor machine is obtained from either theory; but the operating characteristics must be deduced from the performance equations of the rotating-field theory, because of the restrictions on the values of the rotor parameters imposed by skin effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fault tolerant, 5-phase PM generator has been developed for use on the low pressure (LP) shaft of an aircraft gas turbine engine. The machine operates at variable speed and therefore has a variable voltage, variable frequency electrical output (VVVF). The generator is to be used to provide a 350V DC bus for distribution throughout the aircraft, and a study has been carried out that identifies the most suitable AC-DC converter topology for this machine in terms of losses, electrical component ratings, filtering requirements and circuit complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-way power flow is nothing new and has been in practical use using line commutated converters for at least 50 years. With these types of converters, reversal of power flow can be achieved by increasing the firing angle of the devices beyond 90 degrees thus producing a negative DC voltage. Line commutated converters have several known disadvantages including: the direct current cannot be reversed, the power factor decreases when the firing angle increases and the harmonics are high on the line current. To tackle the above problems a forced commutated converter can be used. The power factor can be unity and the harmonics can be reduced. Many researchers have used PWM with different control techniques to serve the above purposes. In each converter arm, they used a forced commutated device with an antiparallel diode. Under the rectification mode of operation the current path is preponderantly through the diodes and under the inverter operation the current flows preponderantly through the forced commutated devices. Although their results were encouraging and gave a unity power factor with nearly sinusoidal current, the main disadvantage was that there were difficulties in controlling the power factor when the system is needed to operate at lagging or leading power factor. In this work, a new idea was introduced by connecting two GTOs antiparallel instead of a diode and a GTO. A single phase system using two GTO converters which are connected in series was built. One converter operates as a rectifier and the other converter operates as an inverter. In the case of the inversion mode and in each inverter arm one GTO is operated as a diode simply by switching it always on and the other antiparallel GTO is operated as a normal device to carry the inverter current. In case of the rectification mode, in each arm one GTO is always off and the other GTP is operated as a controlled device. The main advantage is that the system can be operated at lagging or leading power factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid-solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with `true' three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was mainly experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties. Evidence of strong `trade-off' of properties is shown; the overall solid holdup is believed to be a major parameter influencing the gas holdup structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To fully utilize second-life batteries on the grid system, a hybrid battery scheme needs to be considered for several reasons: the uncertainty over using a single source supply chain for second-life batteries, the differences in evolving battery chemistry and battery configuration by different suppliers to strive for greater power levels, and the uncertainty of degradation within a second-life battery. Therefore, these hybrid battery systems could have widely different module voltage, capacity, and initial state of charge and state of health. In order to suitably integrate and control these widely different batteries, a suitable multimodular converter topology and an associated control structure are required. This paper addresses these issues proposing a modular boost-multilevel buck converter based topology to integrate these hybrid second-life batteries to a grid-tie inverter. Thereafter, a suitable module-based distributed control architecture is introduced to independently utilize each converter module according to its characteristics. The proposed converter and control architecture are found to be flexible enough to integrate widely different batteries to an inverter dc link. Modeling, analysis, and experimental validation are performed on a single-phase modular hybrid battery energy storage system prototype to understand the operation of the control strategy with different hybrid battery configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is part of a project which aims to research the opportunities for the re-use of batteries after their primary use in low and ultra low carbon vehicles on the electricity grid system. One potential revenue stream is to provide primary/secondary/high frequency response to National Grid through market mechanisms via DNO's or Energy service providers. Some commercial battery energy storage systems (BESS) already exist on the grid system, but these tend to use costly new or high performance batteries. Second life batteries should be available at lower cost than new batteries but reliability becomes an important issue as individual batteries may suffer from degraded performance or failure. Therefore converter topology design could be used to influence the overall system reliability. A detailed reliability calculation of different single phase battery-to-grid converter interfacing schemes is presented. A suitable converter topology for robust and reliable BESS is recommended.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study of the hydrodynamics and mass transfer characteristics of a liquid-liquid extraction process in a 450 mm diameter, 4.30 m high Rotating Disc Contactor (R.D.C.) has been undertaken. The literature relating to this type of extractor and the relevant phenomena, such as droplet break-up and coalescence, drop mass transfer and axial mixing has been revjewed. Experiments were performed using the system C1airsol-350-acetone-water and the effects of drop size, drop size-distribution and dispersed phase hold-up on the performance of the R.D.C. established. The results obtained for the two-phase system C1airso1-water have been compared with published correlations: since most of these correlations are based on data obtained from laboratory scale R.D.C.'s, a wide divergence was found. The hydrodynamics data from this study have therefore been correlated to predict the drop size and the dispersed phase hold-up and agreement has been obtained with the experimental data to within +8% for the drop size and +9% for the dispersed phase hold-up. The correlations obtained were modified to include terms involving column dimensions and the data have been correlated with the results obtained from this study together with published data; agreement was generally within +17% for drop size and within +14% for the dispersed phase hold-up. The experimental drop size distributions obtained were in excellent agreement with the upper limit log-normal distributions which should therefore be used in preference to other distribution functions. In the calculation of the overall experimental mass transfer coefficient the mean driving force was determined from the concentration profile along the column using Simpson's Rule and a novel method was developed to calculate the overall theoretical mass transfer coefficient Kca1, involving the drop size distribution diagram to determine the volume percentage of stagnant, circulating and oscillating drops in the sample population. Individual mass transfer coefficients were determined for the corresponding droplet state using different single drop mass transfer models. Kca1 was then calculated as the fractional sum of these individual coefficients and their proportions in the drop sample population. Very good agreement was found between the experimental and theoretical overall mass transfer coefficients. Drop sizes under mass transfer conditions were strongly dependant upon the direction of mass transfer. Drop Sizes in the absence of mass transfer were generally larger than those with solute transfer from the continuous to the dispersed phase, but smaller than those with solute transfer in the opposite direction at corresponding phase flowrates and rotor speed. Under similar operating conditions hold-up was also affected by mass transfer; it was higher when solute transfered from the continuous to the dispersed phase and lower when direction was reversed compared with non-mass transfer operation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is devoted to the tribology at the head~to~tape interface of linear tape recording systems, OnStream ADRTM system being used as an experimental platform, Combining experimental characterisation with computer modelling, a comprehensive picture of the mechanisms involved in a tape recording system is drawn. The work is designed to isolate the mechanisms responsible for the physical spacing between head and tape with the aim of minimising spacing losses and errors and optimising signal output. Standard heads-used in ADR current products-and prototype heads- DLC and SPL coated and dummy heads built from a AI203-TiC and alternative single-phase ceramics intended to constitute the head tape-bearing surface-are tested in controlled environment for up to 500 hours (exceptionally 1000 hours), Evidences of wear on the standard head are mainly observable as a preferential wear of the TiC phase of the AI203-TiC ceramic, The TiC grains are believed to delaminate due to a fatigue wear mechanism, a hypothesis further confirmed via modelling, locating the maximum von Mises equivalent stress at a depth equivalent to the TiC recession (20 to 30 nm). Debris of TiC delaminated residues is moreover found trapped within the pole-tip recession, assumed therefore to provide three~body abrasive particles, thus increasing the pole-tip recession. Iron rich stain is found over the cycled standard head surface (preferentially over the pole-tip and to a lesser extent over the TiC grains) at any environment condition except high temperature/humidity, where mainly organic stain was apparent, Temperature (locally or globally) affects staining rate and aspect; stain transfer is generally promoted at high temperature. Humidity affects transfer rate and quantity; low humidity produces, thinner stains at higher rate. Stain generally targets preferentially head materials with high electrical conductivity, i.e. Permalloy and TiC. Stains are found to decrease the friction at the head-to-tape interface, delay the TiC recession hollow-out and act as a protective soft coating reducing the pole-tip recession. This is obviously at the expense of an additional spacing at the head-to-tape interface of the order of 20 nm. Two kinds of wear resistant coating are tested: diamond like carbon (DLC) and superprotective layer (SPL), 10 nm and 20 to 40 nm thick, respectively. DLC coating disappears within 100 hours due possibly to abrasive and fatigue wear. SPL coatings are generally more resistant, particularly at high temperature and low humidity, possibly in relation with stain transfer. 20 nm coatings are found to rely on the substrate wear behaviour whereas 40 nm coatings are found to rely on the adhesive strength at the coating/substrate interface. These observations seem to locate the wear-driving forces 40 nm below the surface, hence indicate that for coatings in the 10 nm thickness range-· i,e. compatible with high-density recording-the substrate resistance must be taken into account. Single-phase ceramic as candidate for wear-resistant tape-bearing surface are tested in form of full-contour dummy-heads. The absence of a second phase eliminates the preferential wear observed at the AI203-TiC surface; very low wear rates and no evidence of brittle fracture are observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis describes an industrial research project carried out in collaboration with STC Components, Harlow, Essex. Technical and market trends in the use of surface acoustic wave (SAW) devices are reviewed. As a result, three areas not previously addressed by STC were identified: lower insertion loss designs, higher operating frequencies and improved temperature dependent stability. A review of the temperature performance of alternative lower insertion loss designs,shows that greater use could be made of the on-site quartz growing plant. Data is presented for quartz cuts in the ST-AT range. This data is used to modify the temperature performance of a SAW filter. Several recently identified quartz orientations have been tested. These are SST, LST and X33. Problems associated with each cut are described and devices demonstrated. LST quartz, although sensitive to accuracy of cut, is shown to have an improved temperature coefficient over the normal ST orientation. Results show that its use is restricted due to insertion loss variations with temperature. Effects associated with split-finger transducers on LST-quartz are described. Two low-loss options are studied, coupled resonator filters for very narrow bandwidth applications and single phase unidirectional transducers (SPUDT) for fractional bandwidths up to about 1%. Both designs can be implemented with one quarter wavelength transducer geometries at operating frequencies up to 1GHz. The SPUDT design utilised an existing impulse response model to provide analysis of ladder or rung transducers. A coupled resonator filter at 400MHz is demonstrated with a matched insertion loss of less than 3.5dB and bandwidth of 0.05%. A SPUDT device is designed as a re-timing filter for timing extraction in a long haul PCM transmission system. Filters operating at 565MHz are demonstrated with insertion losses of less than 6dB. This basic SPUDT design is extended to a maximally distributed version and demonstrated at 450MHz with 9.8dB insertion loss.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single phase solutions containing three components have been observed to exhibit foaminess near a single to two liquid phase boundary. It was seen, in a sintered plate column under mass transfer conditions, that distillation systems where the liquid appeared as one phase in one part of a column and two phases in another part, exhibited foaminess when the liquid concentration was near the one phase to two phase boundary. Various ternary systems have been studied in a 50 plate. 30mm i.d. Oldershaw column and it was observed that severe foaming occurred in the middle section of the column near the one liquid phase to two liquid phase boundary and no foaming occurred at the end of the column where liquid was either one phase or two phase. This is known as Ross type foam. Mass transfer experiments with Ross type ternary systems have been carried out in a perspex simulator with small and large hole diameter trays. It was observed that by removal of the more volatile component, Ross type foam did not build up on the tray. Severe entrainment of liquid was observed in all cases leading to a 'dry' tray, even with a low free area small diameter hole tray which was expected to produce a bubbly mixture. Entrainment was more severe for high gas superficial velocities and large hole diameters. This behaviour is quite different from the build up of foam observed when one liquid phase/two liquid phase Ross systems were contacted with air above a small sintered disc or with vapour in an Oldershaw distillation column. This observation explains why distillation columns processing mixtures which change from one liquid phase to two liquid phases (or vice versa) must be severely derated to avoid flooding. Single liquid phase holdups at the spray to bubbly transition were measured using a perspex simulator similar to that of Porter & Wong (17). i.e. with no liquid cross flow. A light transmission technique was used to measure the transition from spray regime to bubbly regime. The effect of tray thickness and the ratio of hole diameter to tray thickness on the transition was evaluated using trays of the same hole diameter and free area but having thickness of 2.38 mm, 4 mm, and 6.35 mm. The liquid holdup at the transition was less with the thin metal trays. This result may be interpreted by the theory of Lockett (101), which predicts the transition liquid holdup in terms of the angle of the gas iet leaving the holes in the sieve plate. All the existing correlations have been compared and none were found to be satisfactory and these correlations have been modified in view of the experimental results obtained. A new correlation has been proposed which takes into account the effect of the hole diameter to tray thickness ratio on the transition and good agreement was obtained between the experimental results and the correlated values of the liquid holdup at the transition. Results have been obtained for two immiscible liquids [kerosene and water] on trays to determine whether foaming can be eliminated by operating in the spray regime. Kerosene was added to a fixed volume of water or water was added to a fixed volume of kerosene. In both cases, there was a transition from spray to bubbly. In the water fixed system. the liquid holdup at the transition was slightly less than the pure kerosene system. Whilst for the kerosene fixed system, the transition occurred at much lower liquid holdups. Trends In the results were similar to those for single liquid phase. New correlations have been proposed for the two cases. It has been found that Ross type foams, observed in a sintered plate column and in the Oldershaw column can be eliminated by either carrying out the separation in a packed column or by the addition of defoaming additives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The literature relating to haze formation, methods of separation, coalescence mechanisms, and models by which droplets <100 μm are collected, coalesced and transferred, have been reviewed with particular reference to particulate bed coalescers. The separation of secondary oil-water dispersions was studied experimentally using packed beds of monosized glass ballotini particles. The variables investigated were superficial velocity, bed depth, particle size, and the phase ratio and drop size distribution of inlet secondary dispersion. A modified pump loop was used to generate secondary dispersions of toluene or Clairsol 350 in water with phase ratios between 0.5-6.0 v/v%.Inlet drop size distributions were determined using a Malvern Particle Size Analyser;effluent, coalesced droplets were sized by photography. Single phase flow pressure drop data were correlated by means of a Carman-Kozeny type equation. Correlations were obtained relating single and two phase pressure drops, as (ΔP2/μc)/ΔP1/μd) = kp Ua Lb dcc dpd Cine A flow equation was derived to correlate the two phase pressure drop data as, ΔP2/(ρcU2) = 8.64*107 [dc/D]-0.27 [L/D]0.71 [dp/D]-0.17 [NRe]1.5 [e1]-0.14 [Cin]0.26  In a comparison between functions to characterise the inlet drop size distributions a modification of the Weibull function provided the best fit of experimental data. The general mean drop diameter was correlated by: q_p q_p p_q /β      Γ ((q-3/β) +1) d qp = d fr  .α        Γ ((P-3/β +1 The measured and predicted mean inlet drop diameters agreed within ±15%. Secondary dispersion separation depends largely upon drop capture within a bed. A theoretical analysis of drop capture mechanisms in this work indicated that indirect interception and London-van der Waal's mechanisms predominate. Mathematical models of dispersed phase concentration m the bed were developed by considering drop motion to be analogous to molecular diffusion.The number of possible channels in a bed was predicted from a model in which the pores comprised randomly-interconnected passage-ways between adjacent packing elements and axial flow occured in cylinders on an equilateral triangular pitch. An expression was derived for length of service channels in a queuing system leading to the prediction of filter coefficients. The insight provided into the mechanisms of drop collection and travel, and the correlations of operating parameters, should assist design of industrial particulate bed coalescers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 10 cm diameter four-stage Scheibel column with dispersed phase wetted packing sections has been constructed to study the hydrodynamics and mass transfer using the system toluene-acetone-water. The literature pertaining to the above extractor has been examined and the important phenomena such as droplet break-up and coalescence, mass transfer and backmixing have been reviewed. A critical analysis of the backmixing or axial mixing models and the corresponding techniques for parameter estimation was applied and an optimization technique based on Marquardt's algorithm was implemented. A single phase sampling technique was developed to estimate the acetone concentration profile in both phases along the column. Column flooding characteristics were investigated under various operating conditions and it was found that, when the impellers were located at about DI/5cm from the upper surface of the pads, the limiting flow rates increased with impeller speed. This unusual behaviour was explained in terms of the pumping effect created by the turbine impellers. Correlations were developed to predict Sauter mean drop diameters. A five-cell with backflow model was used to estimate the column performance (stage efficiency) and phases non-ideality (backflow parameters). Overall mass transfer coefficients were computed using the above model and compared with those calculated using the correlations based on single drop mechanism.