9 resultados para Simulation-optimization method
em Aston University Research Archive
Resumo:
We develop an analytical methodology for optimizing phase regeneration based on phase sensitive amplification. The results demonstrate the scalability of the scheme and show the significance of simultaneous optimization of transfer function and the signal alphabet.
Resumo:
This work follows a feasibility study (187) which suggested that a process for purifying wet-process phosphoric acid by solvent extraction should be economically viable. The work was divided into two main areas, (i) chemical and physical measurements on the three-phase system, with or without impurities; (ii) process simulation and optimization. The object was to test the process technically and economically and to optimise the type of solvent. The chemical equilibria and distribution curves for the system water - phosphoric acid - solvent for the solvents n-amyl alcohol, tri-n-butyl phosphate, di-isopropyl ether and methyl isobutyl ketone have been determined. Both pure phosphoric acid and acid containing known amounts of naturally occurring impurities (Fe P0 4 , A1P0 4 , Ca3(P04)Z and Mg 3(P0 4 )Z) were examined. The hydrodynamic characteristics of the systems were also studied. The experimental results obtained for drop size distribution were compared with those obtainable from Hinze's equation (32) and it was found that they deviated by an amount related to the turbulence. A comprehensive literature survey on the purification of wet-process phosphoric acid by organic solvents has been made. The literature regarding solvent extraction fundamentals and equipment and optimization methods for the envisaged process was also reviewed. A modified form of the Kremser-Brown and Souders equation to calculate the number of contact stages was derived. The modification takes into account the special nature of phosphoric acid distribution curves in the studied systems. The process flow-sheet was developed and simulated. Powell's direct search optimization method was selected in conjunction with the linear search algorithm of Davies, Swann and Campey. The objective function was defined as the total annual manufacturing cost and the program was employed to find the optimum operating conditions for anyone of the chosen solvents. The final results demonstrated the following order of feasibility to purify wet-process acid: di-isopropyl ether, methylisobutyl ketone, n-amyl alcohol and tri-n-butyl phosphate.
Resumo:
In this paper, we investigate the hop distance optimization problem in ad hoc networks where cooperative multiinput- single-output (MISO) is adopted to improve the energy efficiency of the network. We first establish the energy model of multihop cooperative MISO transmission. Based on the model, the energy consumption per bit of the network with high node density is minimized numerically by finding an optimal hop distance, and, to get the global minimum energy consumption, both hop distance and the number of cooperating nodes around each relay node for multihop transmission are jointly optimized. We also compare the performance between multihop cooperative MISO transmission and single-input-single-output (SISO) transmission, under the same network condition (high node density). We show that cooperative MISO transmission could be energyinefficient compared with SISO transmission when the path-loss exponent becomes high. We then extend our investigation to the networks with varied node densities and show the effectiveness of the joint optimization method in this scenario using simulation results. It is shown that the optimal results depend on network conditions such as node density and path-loss exponent, and the simulation results are closely matched to those obtained using the numerical models for high node density cases.
Resumo:
A simple method for training the dynamical behavior of a neural network is derived. It is applicable to any training problem in discrete-time networks with arbitrary feedback. The method resembles back-propagation in that it is a least-squares, gradient-based optimization method, but the optimization is carried out in the hidden part of state space instead of weight space. A straightforward adaptation of this method to feedforward networks offers an alternative to training by conventional back-propagation. Computational results are presented for simple dynamical training problems, with varied success. The failures appear to arise when the method converges to a chaotic attractor. A patch-up for this problem is proposed. The patch-up involves a technique for implementing inequality constraints which may be of interest in its own right.
Resumo:
We study a periodic Raman amplified dispersion-managed system with backward-pumping configuration, considering noise and nonlinear impairments. A general optimization method based on nonlinearity management is applied in order to find the configuration that maximizes the system performance. The system is later tested using a full numerical implementation of the nonlinear Schrödinger equation and shown to effectively deliver its longest propagation distance in the same optimal region.
Resumo:
A framework that aims to best utilize the mobile network resources for video applications is presented in this paper. The main contribution of the work proposed is the QoE-driven optimization method that can maintain a desired trade-off between fairness and efficiency in allocating resources in terms of data rates to video streaming users in LTE networks. This method is concerned with the control of the user satisfaction level from the service continuity's point of view and applies appropriate QoE metrics (Pause Intensity and variations) to determine the scheduling strategies in combination with the mechanisms used for adaptive video streaming such as 3GP/MPEG-DASH. The superiority of the proposed algorithms are demonstrated, showing how the resources of a mobile network can be optimally utilized by using quantifiable QoE measurements. This approach can also find the best match between demand and supply in the process of network resource distribution.
Resumo:
A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.
Resumo:
Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory. © 2007 The American Physical Society.
Resumo:
Relay selection has been considered as an effective method to improve the performance of cooperative communication. However, the Channel State Information (CSI) used in relay selection can be outdated, yielding severe performance degradation of cooperative communication systems. In this paper, we investigate the relay selection under outdated CSI in a Decode-and-Forward (DF) cooperative system to improve its outage performance. We formulize an optimization problem, where the set of relays that forwards data is optimized to minimize the probability of outage conditioned on the outdated CSI of all the decodable relays’ links. We then propose a novel multiple-relay selection strategy based on the solution of the optimization problem. Simulation results show that the proposed relay selection strategy achieves large improvement of outage performance compared with the existing relay selection strategies combating outdated CSI given in the literature.