5 resultados para Simple State
em Aston University Research Archive
Resumo:
In biaxial compression tests, the stress calculations based on boundary information underestimate the principal stresses leading to a significant overestimation of the shear strength. In direct shear tests, the shear strain becomes highly concentrated in the mid-plane of the sample during the test. Although the stress distribution within the specimen is heterogeneous, the evolution of the stress ratio inside the shear band is similar to that inferred from the boundary force calculations. It is also demonstrated that the dilatancy in the shear band significantly exceeds that implied from the boundary displacements. In simple shear tests, the stresses acting on the wall boundaries do not reflect the internal state of stress but merely provide information about the average mobilised wall friction. It is demonstrated that the results are sensitive to the initial stress state defined by K0 = sh/sv. For all cases, non-coaxiality of the principal stress and strain-rate directions is examined and the corresponding flow rule is identified. Periodic cell simulations have been used to examine biaxial compression for a wide range of initial packing densities. Both constant volume and constant mean stress tests have been simulated. The characteristic behaviour at both the macroscopic and microscopic scales is determined by whether or not the system percolates (enduring connectivity is established in all directions). The transition from non-percolating to percolating systems is characterised by transitional behaviour of internal variables and corresponds to an elastic percolation threshold, which correlates well with the establishment of a mechanical coordination number of ca. 3.0. Strong correlations are found between macroscopic and internal variables at the critical state.
Resumo:
To ensure state synchronization of signalling operations, many signaling protocol designs choose to establish “soft” state that expires if it is not refreshed. The approaches of refreshing state in multi-hop signaling system can be classified as either end-to-end (E2E) or hop-by-hop (HbH). Although both state refresh approaches have been widely used in practical signaling protocols, the design tradeoffs between state synchronization and signaling cost have not yet been fully investigated. In this paper, we investigate this issue from the perspectives of state refresh and state removal. We propose simple but effective Markov chain models for both approaches and obtain closed-form solutions which depict the state refresh performance in terms of state consistency and refresh message rate, as well as the state removal performance in terms of state removal delay. Simulations verify the analytical models. It is observed that the HbH approach yields much better state synchronization at the cost of higher signaling cost than the E2E approach. While the state refresh performance can be improved by increasing the values of state refresh and timeout timers, the state removal delay increases largely for both E2E and HbH approaches. The analysis here shed lights on the design of signaling protocols and the configuration of the timers to adapt to changing network conditions.
Resumo:
With the proliferation of social media sites, social streams have proven to contain the most up-to-date information on current events. Therefore, it is crucial to extract events from the social streams such as tweets. However, it is not straightforward to adapt the existing event extraction systems since texts in social media are fragmented and noisy. In this paper we propose a simple and yet effective Bayesian model, called Latent Event Model (LEM), to extract structured representation of events from social media. LEM is fully unsupervised and does not require annotated data for training. We evaluate LEM on a Twitter corpus. Experimental results show that the proposed model achieves 83% in F-measure, and outperforms the state-of-the-art baseline by over 7%.© 2014 Association for Computational Linguistics.
Resumo:
Pseudoscalar measures of electronic chirality for molecular systems are derived using the spectral moment theory applied to the frequency-dependent rotational susceptibility. In this scheme a one-electron chirality operator κ^ naturally emerges as a quantum counterpart of the triple scalar product, involving velocity, acceleration and second acceleration. Averaging κ^ over an electronic state vector gives rise to an additive chirality invariant (κ-index), considered as a quantitative measure of chirality. A simple computational technique for quick calculation of the κ-index is developed and various structural classes (cyclic hydrocarbons, cage-shaped systems, etc.) are studied. Reasonable behaviour of the chirality index is demonstrated. The chirality changes during the β-turn formation in Leu-Enkephalin is presented as a useful example of the chirality analysis for conformational transitions.
Resumo:
When required to represent a perspective that conflicts with one's own, functional magnetic resonance imaging (fMRI) suggests that the right ventrolateral prefrontal cortex (rvlPFC) supports the inhibition of that conflicting self-perspective. The present task dissociated inhibition of self-perspective from other executive control processes by contrasting belief reasoning-a cognitive state where the presence of conflicting perspectives was manipulated-with a conative desire state wherein no systematic conflict existed. Linear modeling was used to examine the effect of continuous theta burst stimulation (cTBS) to rvlPFC on participants' reaction times in belief and desire reasoning. It was anticipated that cTBS applied to rvlPFC would affect belief but not desire reasoning, by modulating activity in the Ventral Attention System (VAS). We further anticipated that this effect would be mediated by functional connectivity within this network, which was identified using resting state fMRI and an unbiased model-free approach. Simple reaction-time analysis failed to detect an effect of cTBS. However, by additionally modeling individual measures from within the stimulated network, the hypothesized effect of cTBS to belief (but, importantly, not desire) reasoning was demonstrated. Structural morphology within the stimulated region, rvlPFC, and right temporoparietal junction were demonstrated to underlie this effect. These data provide evidence that inconsistencies found with cTBS can be mediated by the composition of the functional network that is being stimulated. We suggest that the common claim that this network constitutes the VAS explains the effect of cTBS to this network on false belief reasoning. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc.