6 resultados para Similarity irrelate model
em Aston University Research Archive
Resumo:
Owing to the rise in the volume of literature, problems arise in the retrieval of required information. Various retrieval strategies have been proposed, but most of that are not flexible enough for their users. Specifically, most of these systems assume that users know exactly what they are looking for before approaching the system, and that users are able to precisely express their information needs according to l aid- down specifications. There has, however, been described a retrieval program THOMAS which aims at satisfying incompletely- defined user needs through a man- machine dialogue which does not require any rigid queries. Unlike most systems, Thomas attempts to satisfy the user's needs from a model which it builds of the user's area of interest. This model is a subset of the program's "world model" - a database in the form of a network where the nodes represent concepts since various concepts have various degrees of similarities and associations, this thesis contends that instead of models which assume equal levels of similarities between concepts, the links between the concepts should have values assigned to them to indicate the degree of similarity between the concepts. Furthermore, the world model of the system should be structured such that concepts which are related to one another be clustered together, so that a user- interaction would involve only the relevant clusters rather than the entire database such clusters being determined by the system, not the user. This thesis also attempts to link the design work with the current notion in psychology centred on the use of the computer to simulate human cognitive processes. In this case, an attempt has been made to model a dialogue between two people - the information seeker and the information expert. The system, called Thomas-II, has been implemented and found to require less effort from the user than Thomas.
Resumo:
A set of 38 epitopes and 183 non-epitopes, which bind to alleles of the HLA-A3 supertype, was subjected to a combination of comparative molecular similarity indices analysis (CoMSIA) and soft independent modeling of class analogy (SIMCA). During the process of T cell recognition, T cell receptors (TCR) interact with the central section of the bound nonamer peptide; thus only positions 4−8 were considered in the study. The derived model distinguished 82% of the epitopes and 73% of the non-epitopes after cross-validation in five groups. The overall preference from the model is for polar amino acids with high electron density and the ability to form hydrogen bonds. These so-called “aggressive” amino acids are flanked by small-sized residues, which enable such residues to protrude from the binding cleft and take an active role in TCR-mediated T cell recognition. Combinations of “aggressive” and “passive” amino acids in the middle part of epitopes constitute a putative TCR binding motif
Resumo:
This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1mm for displacements parallel to the fluoroscopic plane, and of order of 10mm for the orthogonal displacement. © 2010 P. Bifulco et al.
Resumo:
This paper presents a novel approach to the computation of primitive geometrical structures, where no prior knowledge about the visual scene is available and a high level of noise is expected. We based our work on the grouping principles of proximity and similarity, of points and preliminary models. The former was realized using Minimum Spanning Trees (MST), on which we apply a stable alignment and goodness of fit criteria. As for the latter, we used spectral clustering of preliminary models. The algorithm can be generalized to various model fitting settings, without tuning of run parameters. Experiments demonstrate the significant improvement in the localization accuracy of models in plane, homography and motion segmentation examples. The efficiency of the algorithm is not dependent on fine tuning of run parameters like most others in the field.
Resumo:
Video streaming via Transmission Control Protocol (TCP) networks has become a popular and highly demanded service, but its quality assessment in both objective and subjective terms has not been properly addressed. In this paper, based on statistical analysis a full analytic model of a no-reference objective metric, namely pause intensity (PI), for video quality assessment is presented. The model characterizes the video playout buffer behavior in connection with the network performance (throughput) and the video playout rate. This allows for instant quality measurement and control without requiring a reference video. PI specifically addresses the need for assessing the quality issue in terms of the continuity in the playout of TCP streaming videos, which cannot be properly measured by other objective metrics such as peak signal-to-noise-ratio, structural similarity, and buffer underrun or pause frequency. The performance of the analytical model is rigidly verified by simulation results and subjective tests using a range of video clips. It is demonstrated that PI is closely correlated with viewers' opinion scores regardless of the vastly different composition of individual elements, such as pause duration and pause frequency which jointly constitute this new quality metric. It is also shown that the correlation performance of PI is consistent and content independent. © 2013 IEEE.
Resumo:
In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.