7 resultados para Silicon oxide substrates
em Aston University Research Archive
Resumo:
We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump-probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820nm, whereas the probe wavelength spanned 770 to 810nm. The pump fluence was fixed at 0.6mJ/cm2. We show that at a fixed delay time of 300fs, the conductivity of the excited electron-hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell-Boltzmann distribution, while Fermi-Dirac statics is not suitable. This is corroborated by values retrieved from pump-probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas.
Resumo:
Long-period fibre gratings (LPGs) have previously been used to detect quantities such as temperature, strain and refractive index (RI). The responsivity to surrounding refractive index means that, potentially, LPGs could be realised as optical biosensors for applications in biochemical and biomedical application areas. We report here to our best knowledge the first investigation on refractive index sensing properties of LPGs with sol-gel derived titanium and silicon oxide coatings. It is revealed that the RI sensitivity of an LPG is affected by both the thickness and the index value of the coating; the coating with higher index and thickness will enhance the LPG RI sensitivity significantly. The surrounding refractive index induced LPG resonance shift has been evaluated over the LPGs’ most sensitive RI region from 1.42 to 1.44. We have identified that, in this region, the uncoated LPG has an RI sensitivity of (-673.0±0.4)nm/uri (unit of refractive index) while the LPG coated with titanium oxide exhibits a sensitivity as high as (-1067.15±0.04)nm/uri.
Resumo:
Long-period fibre gratings (LPGs) have previously been used to detect quantities such as temperature, strain, and refractive index (RI). We report here, to the best of our knowledge, the first investigation on refractive index sensing properties of LPGs with sol–gel derived titanium and silicon oxide coatings. It is revealed that the RI sensitivity of an LPG is affected by both the thickness and the index value of the coating; a coating with higher index and thickness will enhance the LPG RI sensitivity significantly. The surrounding refractive index induced LPG resonance shift has been evaluated over the LPGs' most sensitive RI region from 1.42 to 1.44. We have identified that, in this region, the uncoated LPG has an RI sensitivity of (-673.0 ± 0.4) nm/uri (unit of refractive index) while the LPG coated with titanium oxide exhibits a sensitivity as high as (-1067.15 ± 0.04) nm/uri. The experimental results also reveal that, even in the RI insensitive region around 1.33, there still is a marked enhancement in RI sensitivity of the sol–gel coated LPG compared to the uncoated one. This is potentially significant as coated LPGs may be extended to low RI gas and semi-liquidized based sensing applications.
Resumo:
Long-period fibre gratings (LPGs) have previously been used to detect quantities such as temperature, strain and refractive index (RI). The responsivity to surrounding refractive index means that, potentially, LPGs could be realised as optical biosensors for applications in biochemical and biomedical application areas. We report here to our best knowledge the first investigation on refractive index sensing properties of LPGs with sol-gel derived titanium and silicon oxide coatings. It is revealed that the RI sensitivity of an LPG is affected by both the thickness and the index value of the coating; the coating with higher index and thickness will enhance the LPG RI sensitivity significantly. The surrounding refractive index induced LPG resonance shift has been evaluated over the LPGs’ most sensitive RI region from 1.42 to 1.44. We have identified that, in this region, the uncoated LPG has an RI sensitivity of (-673.0±0.4)nm/uri (unit of refractive index) while the LPG coated with titanium oxide exhibits a sensitivity as high as (-1067.15±0.04)nm/uri.
Influence of pretreatment on corrosion behaviour of duplex zinc/polymer coatings on steel substrates
Resumo:
An investigation has been undertaken to determine the major factors influencing the corrosion resistance of duplex-zinc coatings on steel substrates.Premature failure of these systems has been attributed to the presence of defects such as craters and pinholes in the polymer film and debonding of the polymer film from the zinc substrate.Defects found on commercially produced samples have been carefully characterised using metallographic and scanning electron microscopy techniques. The influence of zinc substrate surface roughness, polymer film thickness and degassing of conversion coatings films on the incidence of defects has been determined.Pretreatments of the chromate, chromate-phosphate, non chromate, and alkali-oxide types were applied and the conversion coatings produced characterised with respect to their nature and composition. The effect of degassing on the properties of the films was also investigated. Electrochemical investigations were carried out to determine the effect of the presence of the eta or zeta phase as the outermost layer of the galvanized coating.Flow characteristics of polyester on zinc electroplated hot-dip continuous and batch galvanized and zinc sprayed samples were investigated using hot-stage microscopy. The effects of different pretreatments and degassing after conversion coating formation on flow characteristics were determined.Duplex coatings were subjected to the acetic acid salt spray test. The effect on adhesion was determined using an indentation debonding test and the results compared with those obtained using cross-cut/peel and pull-off tests. The locus of failure was determined using scanning electron microscopy and X-ray photoelectron spectroscopy techniques.
Resumo:
In this paper we propose a novel type of multiple-layer photomixer based on amorphous/nano-crystalline-Si. Such a device implies that it could be possible to enhance the conversion efficiency from optical power to THz emission by increasing the absorption length and by reducing the device overheating through the use of substrates with higher thermal conductivity compared to GaAs. Our calculations show that the output power from a two-layer Si-based photomixer is at least ten times higher than that from conventional LT-GaAs photomixers at 1 THz.
Resumo:
This paper investigates the use of photoconductive plasmas for controlling microwave circuits and antennas on semiconductor substrates. Initial experiments show that significant changes in the reflection coefficient characteristics can be obtained by varying the length of a photo-illuminated plasma region from 0 to 2mm. The resulting structure forms the basis for further experiments involving tuneable microwave devices. © 2013 European Microwave Association.