7 resultados para Silica sonogels - Structural property
em Aston University Research Archive
Resumo:
This paper investigates the effect of silica addition on the structural, textural and acidic properties of an evaporation induced self-assembled (EISA) mesoporous alumina. Two silica addition protocols were applied while maintaining the EISA synthesis route. The first route is based on the addition of a Na-free colloidal silica suspension (Ludox®), and the second method consists of the co-hydrolysis of tetraethyl orthosilicate (TEOS) with aluminium tri-sec-butoxide, to favour a more intimate mixing of the Al- and Si-hydrolysed species. The properties of the so derived materials were compared to the SiO2-free counterpart. The SiO2 addition was always beneficial from a structural and textural standpoint. TEOS appears to have a truly promoting effect; the ordering, surface area and pore volume are all improved. For Ludox®, the enhancement comes from the formation of smaller pores by a densification of the structure. The crystallization of γ-alumina depends on the interaction between the Al- and Si-species in the mesophase. Ludox®-based materials achieved crystallization at 750 °C but the intimate mixing in the TEOS-based mesophases shows a suppression of the phase transformation by 50-100 °C, with respect to the SiO2-free counterpart. This reduces the textural features substantially. For all SiO2-modified materials, the enhancement in the surface area is not accompanied by a concomitant improvement of total acidity, and the formation of weak Lewis acid sites was promoted. These effects were ascribed to SiO2 migration to the surface that blocks part of the acidity.
Resumo:
A mild protocol that allows the template removal of soft un-aged silica nanoparticles was investigated. After oxidizing the organic template by Fenton chemistry, a good structural preservation is only achieved when the material is equilibrated and dried in a low-surface tension solvent. This avoids excessive capillary stress induced by the high surface tension of water, a major component in the Fenton reaction medium. The Fenton reaction should be carried out under mild conditions as well; otherwise the sample deteriorates by extensive hydrolysis, and capillary stress, and the structural ordering diminishes severely. We propose employing 10 ppm Fe concentration at 70 °C for 24 h for the cetyltrimethylammonium bromide template. The proposed protocol involves 2 steps resulting in an overall significantly higher pore volume attributed to the wider pores and limited particle agglomeration, while the calcined counterpart evidences aggregation and loss of the hexagonal ordering. n-BuOH exchange is unnecessary when the mesophase is stabilized by ageing, as the structure resists the water capillary stress. © The Royal Society of Chemistry 2013.
Resumo:
The primary objective of this research has been to investigate the interfacial phenomenon of protein adsorption in relation to the bulk and surface structure-property effect s of hydrogel polymers. In order to achieve this it was first necessary to characterise the bulk and surface properties of the hydrogels, with regard to the structural chemistry of their component monomers. The bulk properties of the hydrogels were established using equilibrium water content measurements, together with water-binding studies by differential scanning calorimetry (D.S.C.). Hamilton and captive air bubble-contact angle techniques were employed to characterise the hydrogel-water interface and from which by a mathematical derivation, the interfacial free energy (ðsw) and the surface free energy components (ð psv, ðdsv, ðsv) were obtained. From the adsorption studies using the radio labelled iodinated (125I) proteins of human serum albumin (H.S.A.) and human fibrinogen (H.Fb.), it was Found that multi-layered adsorption was occurring and that the rate and type of this adsorption was dependent on the physico-chemical behaviour of the adsorbing protein (and its bulk concentration in solution), together with the surface energetics of the adsorbent polymer. A potential method for the invitro evaluation of a material's 'biocompatibility' was also investigated, based on an empirically observed relationship between the adsorption of albumin and fibrinogen and the 'biocompatibility' of polymeric materials. Furthermore, some consideration was also given to the biocompatibility problem of proteinaceous deposit formation on hydrophilic soft' contact lenses and in addition a number of potential continual wear contact lens formulations now undergoing clinical trials,were characterised by the above techniques.
Resumo:
This study identifies and investigates the potential use of in-eye trigger mechanisms to supplement the widely available information on release of ophthalmic drugs from contact lenses under passive release conditions. Ophthalmic dyes and surrogates have been successfully employed to investigate how these factors can be drawn together to make a successful system. The storage of a drug-containing lens in a pH lower than that of the ocular environment can be used to establish an equilibrium that favours retention of the drug in the lens prior to ocular insertion. Although release under passive conditions does not result in complete dye elution, the use of mechanical agitation techniques which mimic the eyelid blink action in conjunction with ocular tear chemistry promotes further release. In this way differentiation between passive and triggered in vitro release characteristics can be established. Investigation of the role of individual tear proteins revealed significant differences in their ability to alter the equilibrium between matrix-held and eluate-held dye or drug. These individual experiments were then investigated in vivo using ophthalmic dyes. Complete elution was found to be achievable in-eye; this demonstrated the importance of that fraction of the drug retained under passive conditions and the triggering effect of in-eye conditions on the release process. Understanding both the structure-property relationship between drug and material and in-eye trigger mechanisms, using ophthalmic dyes as a surrogate, provides the basis of knowledge necessary to design ocular drug delivery vehicles for in-eye release in a controllable manner.
Resumo:
An ordered macroporous host (mac-SiO2) has been used to prevent aggregation of layered photocatalysts based on carbon nitride. Using typical carbon nitride synthesis conditions, cyanamide was condensed at 550 °C in the presence and absence of mac-SiO2. Condensation in the absence of mac-SiO2 results in materials with structural characteristics consistent with the carbon nitride, melon, accompanied by ca. 2 wt% carbonization. For mac-SiO2 supported materials, condensation occurs with greater carbonization (ca. 6 wt%). On addition of 3 wt% Pt cocatalyst photocatalytic hydrogen production under visible light is found to be up to 10 times greater for the supported composites. Time-resolved photoluminescence spectroscopy shows that excited state relaxation is more rapid for the mac-SiO2 supported materials suggesting faster electron-hole recombination and that supported carbon nitride does not exhibit improved charge separation. CO2 temperature programmed desorption indicates that enhanced photoactivity of supported carbon nitride is attributable to an increased surface area compared to bulk carbon nitride and an increase in the concentration of weakly basic catalytic sites, consistent with carbon nitride oligomers.
Resumo:
Sol-gel-synthesized bioactive glasses may be formed via a hydrolysis condensation reaction, silica being introduced in the form of tetraethyl orthosilicate (TEOS), and calcium is typically added in the form of calcium nitrate. The synthesis reaction proceeds in an aqueous environment; the resultant gel is dried, before stabilization by heat treatment. These materials, being amorphous, are complex at the level of their atomic-scale structure, but their bulk properties may only be properly understood on the basis of that structural insight. Thus, a full understanding of their structure-property relationship may only be achieved through the application of a coherent suite of leading-edge experimental probes, coupled with the cogent use of advanced computer simulation methods. Using as an exemplar a calcia-silica sol-gel glass of the kind developed by Larry Hench, in the memory of whom this paper is dedicated, we illustrate the successful use of high-energy X-ray and neutron scattering (diffraction) methods, magic-angle spinning solid-state NMR, and molecular dynamics simulation as components to a powerful methodology for the study of amorphous materials.
Resumo:
Porosity development of mesostructured colloidal silica nanoparticles is related to the removal of the organic templates and co-templates which is often carried out by calcination at high temperatures, 500-600 °C. In this study a mild detemplation method based on the oxidative Fenton chemistry has been investigated. The Fenton reaction involves the generation of OH radicals following a redox Fe3+/Fe2+ cycle that is used as catalyst and H2O2 as oxidant source. Improved material properties are anticipated since the Fenton chemistry comprises milder conditions than calcination. However, the general application of this methodology is not straightforward due to limitations in the hydrothermal stability of the particular system under study. The objective of this work is three-fold: 1) reducing the residual Fe in the resulting solid as this can be detrimental for the application of the material, 2) shortening the reaction time by optimizing the reaction temperature to minimize possible particle agglomeration, and finally 3) investigating the structural and textural properties of the resulting material in comparison to the calcined counterparts. It appears that the Fenton detemplation can be optimized by shortening the reaction time significantly at low Fe concentration. The milder conditions of detemplation give rise to enhanced properties in terms of surface area, pore volume, structural preservation, low Fe residue and high degree of surface hydroxylation; the colloidal particles are stable during storage. A relative particle size increase, expressed as 0.11%·h-1, has been determined.