15 resultados para Sheet metal production

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the bulge test, a sheet metal specimen is clamped over a circular hole in a die and formed into a bulge by the hydraulic pressure on one side of the specirnen. As the unsupported part of the specimen is deformed in this way, its area is increased, in other words, the material is generally stretched and its thickness generally decreased. The stresses causing this stretching action are the membrane stresses in the shell generated by the hydraulic pressure, in the same way as the rubber in a toy balloon is stretched by the membrane stresses caused by the air inside it. The bulge test is a widely used sheet metal test, to determine the "formability" of sheet materials. Research on this forming process (2)-(15)* has hitherto been almost exclusively confined to predicting the behaviour of the bulged specimen through the constitutive equations (stresses and strains in relation to displacements and shapes) and empirical work hardening characteristics of the material as determined in the tension test. In the present study the approach is reversed; the stresses and strains in the specimen are measured and determined from the geometry of the deformed shell. Thus, the bulge test can be used for determining the stress-strain relationship in the material under actual conditions in sheet metal forming processes. When sheet materials are formed by fluid pressure, the work-piece assumes an approximately spherical shape, The exact nature and magnitude of the deviation from the perfect sphere can be defined and measured by an index called prolateness. The distribution of prolateness throughout the workpiece at any particular stage of the forming process is of fundamental significance, because it determines the variation of the stress ratio on which the mode of deformation depends. It is found. that, before the process becomes unstable in sheet metal, the workpiece is exactly spherical only at the pole and at an annular ring. Between the pole and this annular ring the workpiece is more pointed than a sphere, and outside this ring, it is flatter than a sphere. In the forming of sheet materials, the stresses and hence the incremental strains, are closely related to the curvatures of the workpiece. This relationship between geometry and state of stress can be formulated quantitatively through prolateness. The determination of the magnitudes of prolateness, however, requires special techniques. The success of the experimental work is due to the technique of measuring the profile inclination of the meridional section very accurately. A travelling microscope, workshop protractor and surface plate are used for measurements of circumferential and meridional tangential strains. The curvatures can be calculated from geometry. If, however, the shape of the workpiece is expressed in terms of the current radial (r) and axial ( L) coordinates, it is very difficult to calculate the curvatures within an adequate degree of accuracy, owing to the double differentiation involved. In this project, a first differentiation is, in effect, by-passed by measuring the profile inclination directly and the second differentiation is performed in a round-about way, as explained in later chapters. The variations of the stresses in the workpiece thus observed have not, to the knowledge of the author, been reported experimentally. The static strength of shells to withstand fluid pressure and their buckling strength under concentrated loads, both depend on the distribution of the thickness. Thickness distribution can be controlled to a limited extent by changing the work hardening characteristics of the work material and by imposing constraints. A technique is provided in this thesis for determining accurately the stress distribution, on which the strains associated with thinning depend. Whether a problem of controlled thickness distribution is tackled by theory, or by experiments, or by both combined, the analysis in this thesis supplies the theoretical framework and some useful experimental techniques for the research applied to particular problems. The improvement of formability by allowing draw-in can also be analysed with the same theoretical and experimental techniques. Results on stress-strain relationships are usually represented by single stress-strain curves plotted either between one stress and one strain (as in the tension or compression tests) or between the effective stress and effective strain, as in tests on tubular specimens under combined tension, torsion and internal pressure. In this study, the triaxial stresses and strains are plotted simultaneously in triangular coordinates. Thus, both stress and strain are represented by vectors and the relationship between them by the relationship between two vector functions. From the results so obtained, conclusions are drawn on both the behaviour and the properties of the material in the bulge test. The stress ratios are generally equal to the strain-rate ratios (stress vectors collinear with incremental strain vectors) and the work-hardening characteristics, which apply only to the particular strain paths are deduced. Plastic instability of the material is generally considered to have been reached when the oil pressure has attained its maximum value so that further deformation occurs under a constant or lower pressure. It is found that the instability regime of deformation has already occurred long before the maximum pressure is attained. Thus, a new concept of instability is proposed, and for this criterion, instability can occur for any type of pressure growth curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation is in two parts, theory and experimental verification. (1) Theoretical Study In this study it is, for obvious reasons, necessary to analyse the concept of formability first. For the purpose of the present investigation it is sufficient to define the four aspects of formability as follows: (a) the formability of the material at a critical section, (b) the formability of the material in general, (c) process efficiency, (d) proportional increase in surface area. A method of quantitative assessment is proposed for each of the four aspects of formability. The theoretical study also includes the distinction between coaxial and non-coaxial strains which occur, respectively, in axisymmetrical and unsymmetrical forming processes and the inadequacy of the circular grid system for the assessment of formability is explained in the light of this distinction. (2) Experimental Study As one of the bases of the experimental work, the determination of the end point of a forming process, which sets the limit to the formability of the work material, is discussed. The effects of three process parameters on draw-in are shown graphically. Then the delay of fracture in sheet metal forming resulting from draw-in is analysed in kinematical terms, namely, through the radial displacements, the radial and the circumferential strains, and the projected thickness of the workpiece. Through the equilibrium equation of the membrane stresses, the effect on the shape of the unsupported region of the workpiece, and hence the position of the critical section is explained. Then, the effect of draw-in on the four aspects of formability is discussed throughout this investigation. The triangular coordinate system is used to present and analyse the triaxial strains involved. This coordinate system has the advantage of showing all the three principal strains in a material simultaneously, as well as representing clearly the many types of strains involved in sheet metal work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cold roll forming of thin-walled sections is a very useful process in the sheet metal industry. However, the conventional method for the design and manufacture of form-rolls, the special tooling used in the cold roll forming process, is a very time consuming and skill demanding exercise. This thesis describes the establishment of a stand-alone minicomputer based CAD/CAM system for assisting the design and manufacture of form-rolls. The work was undertaken in collaboration with a leading manufacturer of thin-walled sections. A package of computer programs have been developed to provide computer aids for every aspect of work in form-roll design and manufacture. The programs have been successfully implemented, as an integrated CAD/CAM software system, on the ICL PERQ minicomputer with graphics facilities. Thus, the developed CAD/CAM system is a single-user workstation, with software facilities to help the user to perform the conventional roll design activities including the design of the finished section, the flower pattern, and the form-rolls. A roll editor program can then be used to modify, if required, the computer generated roll profiles. As far as manufacturing is concerned, a special-purpose roll machining program and postprocessor can be used in conjunction to generate the NC control part-programs for the production of form-rolls by NC turning. Graphics facilities have been incorporated into the CAD/CAM software programs to display drawings interactively on the computer screen throughout all stages of execution of the CAD/CAM software. It has been found that computerisation can shorten the lead time in all activities dealing with the design and manufacture of form-rolls, and small or medium size manufacturing companies can gain benefits from the CAD/CM! technology by developing, according to its own specification, a tailor-made CAD/CAM software system on a low cost minicomputer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The manufacture of copper alloy flat rolled metals involves hot and cold rolling operations, together with annealing and other secondary processes, to transform castings (mainly slabs and cakes) into such shapes as strip, plate, sheet, etc. Production is mainly to customer orders in a wide range of specifications for dimensions and properties. However, order quantities are often small and so process planning plays an important role in this industry. Much research work has been done in the past in relation to the technology of flat rolling and the details of the operations, however, there is little or no evidence of any research in the planning of processes for this type of manufacture. Practical observation in a number of rolling mills has established the type of manual process planning traditionally used in this industry. This manual approach, however, has inherent drawbacks, being particularly dependent on the individual planners who gain their knowledge over a long span of practical experience. The introduction of the retrieval CAPP approach to this industry was a first step to reduce these problems. But this could not provide a long-term answer because of the need for an experienced planner to supervise generation of any plan. It also fails to take account of the dynamic nature of the parameters involved in the planning, such as the availability of resources, operation conditions and variations in the costs. The other alternative is the use of a generative approach to planning in the rolling mill context. In this thesis, generative methods are developed for the selection of optimal routes for single orders and then for batches of orders, bearing in mind equipment restrictions, production costs and material yield. The batch order process planning involves the use of a special cluster analysis algorithm for optimal grouping of the orders. This research concentrates on cold-rolling operations. A prototype model of the proposed CAPP system, including both single order and batch order planning options, has been developed and tested on real order data in the industry. The results were satisfactory and compared very favourably with the existing manual and retrieval methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cold roll forming is an extremely important but little studied sheet metal forming process. In this thesis, the process of cold roll forming is introduced and it is seen that form roll design is central to the cold roll forming process. The conventional design and manufacture of form rolls is discussed and it is observed that surrounding the design process are a number of activities which although peripheral are time consuming and a possible source of error. A CAD/CAM system is described which alleviates many of the problems traditional to form roll design. New techniques for the calculation of strip length and controlling the means of forming bends are detailed. The CAD/CAM system's advantages and limitations are discussed and, whilst the system has numerous significant advantages, its principal limitation can be said to be the need to manufacture form rolls and test them on a mill before a design can be stated satisfactory. A survey of the previous theoretical and experimental analysis of cold roll forming is presented and is found to be limited. By considering the previous work, a method of numerical analysis of the cold roll forming process is proposed based on a minimum energy approach. Parallel to the numerical analysis, a comprehensive range of software has been developed to enhance the designer's visualisation of the effects of his form roll design. A complementary approach to the analysis of form roll design is the generation of form roll design, a method for the partial generation of designs is described. It is suggested that the two approaches should continue in parallel and that the limitation of each approach is knowledge of the cold roll forming process. Hence, an initial experimental investigation of the rolling of channel sections is described. Finally, areas of potential future work are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of alkali-doped metal oxide catalysts were prepared and evaluated for activity in the transesterification of rapeseed oil to biodiesel. Of those evaluated, LiNO3/CaO, NaNO3/CaO, KNO3/CaO and LiNO3/MgO exhibited >90% conversion in a standard 3 h test. There was a clear correlation between base strength and activity. These catalysts appeared to be promising candidates to replace conventional homogeneous catalysts for biodiesel production as the reaction times are low enough to be practical in continuous processes and the preparations are neither prohibitively difficult nor costly. However, metal leaching from the catalyst was detected, and this resulted in some homogeneous activity. This would have to be resolved before these catalysts would be viable for large-scale biodiesel production facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminium - lithium alloys are specialist alloys used exclusively by the aerospace industry. They have properties that are favourable to the production of modern military aircraft. The addition of approximately 2.5 percent lithium to aluminium increases the strength characteristics of the new alloys by 10 percent. The same addition has the added advantage of decreasing the density of the resulting alloy by a similar percentage. The disadvantages associated with this alloy are primarily price and castability. The addition of 2.5 weight percent lithium to aluminium results in a price increase of 100% explaining the aerospace exclusivity. The processability of the alloys is restricted to ingot casting and wrought treatment but for complex components precision casting is required. Casting the alloys into sand and investment moulds creates a metal - mould reaction, the consequences of which are intolerable in the production of military hardware. The primary object of this project was to investigate and characterise the reactions occurring between the newly poured metal and surface of the mould and to propose a method of counteracting the metal - mould reaction. The constituents of standard sand and investment moulds were pyrolised with lithium metal in order to simplify the complex in-mould reaction and the products were studied by the solid state techniques of powder X-Ray diffraction and magic angle spinning nuclear magnetic resonance spectroscopy. The results of this study showed that the order of reaction was: Organic reagents> > Silicate reagents> Non silicate reagents Alphaset and Betaset were the two organic binders used to prepare the sand moulds throughout this project. Studies were carried out to characterise these resins in order to determine the factors involved in their reaction with lithium. Analysis revealed that during the curing process the phenolic hydroxide groups are not reacted out and that a redox reaction takes place between these hydroxides and the lithium in the molten alloys. Casting experiments carried out to assess the protection afforded by various hydroxide protecting agents showed that modern effective, protecting chemicals such as bis-trimethyl silyl acetamide and hexamethyldisilazane did not inhibit the metal - mould reaction to a sufficiently high standard and that tri-methylchlorosilane was consistently the best performer. Tri-methyl chlorosilane has a simple functionalizing mechanism compared to other hydroxide protecting reagents and this factor is responsible for its superior inhibiting qualities. Comparative studies of 6Li and 7Li N.M.R. spectra (M.A.S. and `off angle') establish that, for solid state (and even solution) analytical purposes 6Li is the preferred nucleus. 6Li M.A.S.N.M.R. spectra were obtained for thermally treated laponite clay. At temperatures below 800oC both dehydrated and rehydrated samples were considered. The data are consistent with mobility of lithium ions from the trioctahedral clay sites at 600oC. The superior resolution achievable in 6Li M.A.S.N.M.R. is demonstrated in the analysis of a microwave prepared lithium exchanged clay where 6Li spectroscopy revelaed two lithium sites in comparison to 7Li M.A.S.N.M.R. which gave only a single lithium resonance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This doctoral thesis originates from an observational incongruence between the perennial aims and aspirations of economic endeavour and actually recorded outcomes, which frequently seem contrary to those intended and of a recurrent, cyclical type. The research hypothesizes parallel movement between unstable business environments through time, as expressed by periodically fluctuating levels of economic activity, and the precipitation rates of industrial production companies. A major problem arose from the need to provide theoretical and empirical cohesion from the conflicting, partial and fragmented interpretations of several hundred historians and economists, without which the research question would remain unanswerable. An attempt to discover a master cycle, or superimposition theorem, failed, but was replaced by minute analysis of both the concept of cycles and their underlying data-bases. A novel technique of congregational analysis emerged, resulting in an integrated matrix of numerical history. Two centuries of industrial revolution history in England and Wales was then explored and recomposed for the first time in a single account of change, thereby providing a factual basis for the matrix. The accompanying history of the Birmingham area provided the context of research into the failure rates and longevities of firms in the city's staple metal industries. Sample specific results are obtained for company longevities in the Birmingham area. Some novel presentational forms are deployed for results of a postal questionnaire to surviving firms. Practical demonstration of the new index of national economic activity (INEA) in relation to company insolvencies leads to conclusions and suggestions for further applications of research into the tempo of change, substantial Appendices support the thesis and provide a compendium of information covering immediately contiguous domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zirconium-containing periodic mesoporous organosilicas (Zr-PMOs) with varying framework organic content have been synthesized through a direct synthesis method. These materials display the excellent textural properties of the analogous inorganic solid acid Zr-SBA-15 material. However, the substitution of silica by organosilicon species provides a strong hydrophobic character. This substitution leads to meaningful differences in the environment surrounding the zirconium metal sites, leading the modification of the catalytic properties of these materials. Although lower metal incorporation is accomplished in the final materials, leading to a lower population of metal sites, hydrophobisation leads to an impressive beneficial effect on the intrinsic catalytic activity of the zirconium sites in biodiesel production by esterification/transesterification of free fatty acid -containing feedstock. Moreover, the catalytic activity of the highly hybridised materials is hardly affected in presence of large amounts of water, confirming their very good water-tolerance. This makes Zr-PMO materials interesting catalysts for biodiesel production from highly acidic water-containing feedstock. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photodeposition of H2PtCl6 in the presence of methanol promotes the formation of highly dispersed, metallic Pt nanoparticles over titania, likely via capture of photogenerated holes by the alcohol to produce an excess of surface electrons for substrate-mediated transfer to Pt complexes, resulting in a high density of surface nucleation sites for Pt reduction. Photocatalytic hydrogen production from water is proportional to the surface density of Pt metal co-catalyst, and hence photodeposition in the presence of high methanol concentrations affords a facile route to optimising photocatalyst design and highlights the importance of tuning co-catalyst properties in photocatalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arenesulfonic-acid functionalized SBA-15 materials have been used in the production of biodiesel from low grade oleaginous feedstock. These materials display an outstanding catalytic activity, being able to promote the transformation of crude palm oil with methanol into fatty acid methyl esters with high yield (85%) under mild reaction conditions. However, high sensitivity of the catalyst against poisoning by different substances has also been detected. Thus, alkaline metal cations, such as sodium or potassium exert a negative influence on the catalytic activity of these materials, being necessary amounts around 500 ppm of sodium in the reaction media to decrease the catalytic activity of these materials to a half of its initial value in just two reaction runs. The deactivation of arenesulfonic acid functionalized SBA-15 materials seems to occur in this case by ion exchange of the acid protons at the sulfonic groups. Organic unsaponifiable compounds like lecithin or retinol also induce a negative influence in the catalytic activity of these sulfonic acid-based materials, though not so intense as in the case of alkaline metals. The deactivating mechanism associated to the influence of the organic compounds seems to be linked to the adsorption of such substances onto the catalytic acid sites as well as on the silica surface. The accumulation of lecithin in the surface of catalyst, observed by means of thermogravimetric analysis, suggest the creation of a strong interaction, probably by ion pair, between this compound and the sulfonic acid group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first application of WS2, a well-known graphene analogue, as a solid acid catalyst for carboxylic acid esterification is reported. WS2 exhibits excellent specific activities and high conversion to methyl esters of (65–90%) for C2–C16 carboxylic acid esterification with methanol under mild conditions, with Turnover Frequencies between 80 and 180 h−1, and outstanding water tolerance even under equimolar water spiking. WS2 also exhibits good stability towards methyl propanoate in the continuous esterification of propanoic acid, and is a promising candidate for biofuels production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesoporous silica supported Ni nanoparticles have been investigated for hydrogen production from ethanol steam reforming. Ethanol reforming is structure-sensitive over Ni, and also dependent on support mesostructure; three-dimensional KIT-6 possessing interconnected mesopores offers superior metal dispersion, steam reforming activity, and on-stream stability against deactivation compared with a two-dimensional SBA-15 support.