5 resultados para Shear failure

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been made of serrated yielding in two commercial Al-Zn-Mg alloys in the as-quenched condition. The different serration types produced in the two alloys and the shear failure mechanism observed in both notched-bend and tensile testing are related to the mechanisms of dynamic strain ageing occurring during the test. An estimate of 19.7 kJ/mole for the activation energy for exchange of a solute atom and a vacancy in Al-6.2 wt% Zn, 2.5 wt% Mg has been made. © 1981.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The occurrence of spalling is a major factor in determining the fire resistance of concrete constructions. The apparently random occurrence of spalling has limited the development and application of fire resistance modelling for concrete structures. This Thesis describes an experimental investigation into the spalling of concrete on exposure to elevated temperatures. It has been shown that spalling may be categorised into four distinct types, aggregate spalling, corner spalling, surface spalling and explosive spalling. Aggregate spalling has been found to be a form of shear failure of aggregates local to the heated surface. The susceptibility of any particular concrete to aggregate spalling can be quantified from parameters which include the coefficients of thermal expansion of both the aggregate and the surrounding mortar, the size and thermal diffusivity of the aggregate and the rate of heating. Corner spalling, which is particularly significant for the fire resistance of concrete columns, is a result of concrete losing its tensile strength at elevated temperatures. Surface spalling is the result of excessive pore pressures within heated concrete. An empirical model has been developed to allow quantification of the pore pressures and a material failure model proposed. The dominant parameters are rate of heating, pore saturation and concrete permeability. Surface spalling may be alleviated by limiting pore pressure development and a number of methods to this end have been evaluated. Explosive spalling involves the catastrophic failure of a concrete element and may be caused by either of two distinct mechanisms. In the first instance, excessive pore pressures can cause explosive spalling, although the effect is limited principally to unloaded or relatively small specimens. A second cause of explosive spalling is where the superimposition of thermally induced stresses on applied load stresses exceed the concrete's strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examines experimentally and theoretically the behaviour and ultimate strength of rectangular reinforced concrete members under combined torsion, shear and bending. The experimental investigation consists of the test results of 38 longitudinally and transversely reinforced concrete beams subjected to combined loads, ten beams of which were tested under pure torsion and self-weight. The behaviour of each test beam from application of the first increment of load until failure is presented. The effects of concrete strength, spacing of the stirrups, the amount of longitudinal steel and the breadth of the section on the ultimate torsional capacity are investigated. Based on the skew-bending mechanism, compatibility, and linear stress-strain relationship for the concrete and the steel, simple rational equations are derived for the three principal modes of failure for the following four types of failure observed in the tests: TYPE I Yielding the reinforcement, at failure, before crushing the concrete. TYPE II Yielding of the web steel only, at failure, before crushing the concrete. TYPE III Yielding of the longitudinal steel only, at failure, before crushing the concrete. TYPE IV Crushing of the concrete, at failure, before yielding of any of the reinforcement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work constitutes a study of the strength of mild steel fillet welds subject to static loading, and the behaviour of flange welded beam-column connections under combined bending and shear. Tests are conducted on short welds in the as-welded and stress relieved conditions, and also on full-size beam-column connections. It is shown that welds under compression have a lower strength than when under tension. Failure of the fillet weld is initiated at the weld root, the important factor controlling the initiation being weld ductility. The greater the residual stress, the lower the weld ductility and ultimate strength. Thermal stress relieving increases strength by as much as 30%. Weld failure plane is rarely at the throat and varies from 0° to 45° depending upon loading condition. Failure plane average stresses are related by a circular function which is expressed in terms of externally applied forces at limit state. The tension weld of a flange-welded beam-column connection always fails before the compression weld. The shear load sharing between the welds is a complex function of elastic compression of the web, elastic/plastic deformation of the flanges, load/deformation characteristics, and the type of load application. Bearing forces between the compression flange and column face produce low level bearing stresses and frictional forces which make a negligible contribution to shear load resistance. Three modes of connection failure are possible; 'end mode', 'bending mode' and 'shear mode', with a sudden change taking place between the two latter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicone elastomers are commonly used in the manufacture of single-piece joint replacement implants for the finger joints. However, the survivorship of these implants can be poor, with failure typically occurring from fracture of the stems. The aim of this paper was to investigate the crack growth of medical-grade silicone using pure shear tests. Two medical-grade silicones (C6-180 and Med82-5010-80) were tested. Each sample had a 20 mm crack introduced and was subjected to a sinusoidally varying tensile strain, with a minimum of 0 per cent and a maximum in the range 10 to 77 per cent. Testing was undertaken at a frequency of 10 Hz. At various times during testing, the testing machine was stopped, the number of cycles completed was noted, and the crack length measured. Graphs of crack length against number of cycles were plotted, as well as the crack growth rate against tearing energy. The results show that Med82-5010-80 is more crack resistant than C6-180. Graphs of crack growth rate against tearing energy can be used to predict the failure of these medical-grade elastomers.