5 resultados para Shape factor

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to compare the in vitro dissolution profile of a new rapidly absorbed paracetamol tablet containing sodium bicarbonate (PS) with that of a conventional paracetamol tablet (P), and to relate these by deconvolution and mapping to in vivo release. The dissolution methods used include the standard procedure described in the USP monograph for paracetamol tablets, employing buffer at pH5.8 or 0.05 M HCl at stirrer speeds between 10 and 50 rpm. The mapping process was developed and implemented in Microsoft Excel® worksheets that iteratively calculated the optimal values of scale and shape factors which linked in vivo time to in vitro time. The in vitro-in vivo correlation (IVIVC) was carried out simultaneously for both formulations to produce common mapping factors. The USP method, using buffer at pH5.8, demonstrated no difference between the two products. However, using an acidic medium the rate of dissolution of P but not of PS decreased with decreasing stirrer speed. A significant correlation (r=0.773; p<.00001) was established between in vivo release and in vitro dissolution using the profiles obtained with 0.05 M HCl and a stirrer speed of 30 rpm. The scale factor for optimal simultaneous IVIVC in the fasting state was 2.54 and the shape factor was 0.16; corresponding values for mapping in the fed state were 3.37 and 0.13 (implying a larger in vitro-in vivo time difference but reduced shape difference in the fed state). The current IVIVC explains, in part, the observed in vivo variability of the two products. The approach to mapping may also be extended to different batches of these products, to predict the impact of any changes of in vitro dissolution on in vivo release and plasma drug concentration-time profiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is concerned with the assessment of a newer version of the spout-fluid bed where the gas is supplied from a common plenum and the distributor controls the operational phenomenon. Thus the main body of the work deals with the effect of the distributor design on the mixing and segregation of solids in a spout-filled bed. The effect of distributor design in the conventional fluidised bed and of variation of the gas inlet diameter in a spouted bed were also briefly investigated for purpose of comparison. Large particles were selected for study because they are becoming increasingly important in industrial fluidised beds but have not been thoroughly investigated. The mean particle diameters of the fraction ranged from 550 to 2400 mm, and their specific gravity from 0.97 to 2.45. Only work carried out with binary systems is reported here. The effect of air velocity, particle properties, bed height, the relative amount of jetsam and flotsam and initial conditions on the steady-state concentration profiles were assessed with selected distributors. The work is divided into three sections. Sections I and II deal with the fluidised bed and spouted bed systems. Section III covers the development of the spout-filled bed and its behaviour with reference to distributor design and it is shown how benefits of both spouting and fluidising phenomena can be exploited. In the fluidisation zone, better mixing is achieved by distributors which produce a large initial bubble diameter. Some common features exist between the behaviour of unidensity jetsam-rich systems and different density flotsam-rich systems. The shape factor does not seem to have an affect as long as it is only restricted to the minor component. However, in the case of the major component, particle shape significantly affects the final results. Studies of aspect ratio showed that there is a maximum (1.5) above which slugging occurs and the effect of the distributor design is nullified. A mixing number was developed for unidensity spherical rich systems, which proved to be extremely useful in quantifying the variation in mixing and segregation with changes in distributor design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE. To compare axial length growth between white children with myopia wearing orthokeratology contact lenses (OK) and distance single-vision spectacles (SV) over a 2-year period. METHODS. Subjects 6 to 12 years of age with myopia -0.75 to -4.00 diopters of sphere (DS) and astigmatism ≤1.00 diopters of cylinder (DC) were prospectively allocated OK or SV correction. Measurements of axial length (Zeiss IOLMaster), corneal topography, and cycloplegic refraction were taken at 6-month intervals. RESULTS. Thirty-one children were fitted with OK and 30 with SV. Following 24 months, axial length increased significantly over time for both the OK group (0.47 mm) and SV group (0.69 mm; P < 0.001), with a significant interaction between time and group (P = 0.05) reflecting a greater increase in the SV group. Significant differences in refraction were found over time, between groups and for the interaction between time and group for spherical (all P < 0.001) but not cylindrical components of refraction (all P > 0.05). Significantly greater corneal flattening was evident in the OK group for the flatter and steeper corneal powers and for corneal shape factor (all P ≤0.05). CONCLUSIONS. Orthokeratology contact lens wear reduces axial elongation in comparison to distance single-vision spectacles in children. © 2012 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I model the forward premium in the U.K. gilt-edged market over the period 1982–96 using a two-factor general equilibrium model of the term structure of interest rates. The model permits the decomposition of the forward premium into separate components representing interest rate expectations, the risk premia associated with each of the underlying factors, and terms capturing the direct impact of the variances of the factors on the shape of the forward curve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic initiation factor 5A (eIF5A) is the only protein in nature that contains hypusine, an unusual amino acid derived from the modification of lysine by spermidine. Two genes, TIF51A and TIF51B, encode eIF5A in the yeast Saccharomyces cerevisiae. In an effort to understand the structure-function relationship of eIF5A, we have generated yeast mutants by introducing plasmid-borne tif51A into a double null strain where both TIF51A and TIF51B have been disrupted. One of the mutants, tsL102A strain (tif51A L102A tif51aDelta tif51bDelta) exhibits a strong temperature-sensitive growth phenotype. At the restrictive temperature, tsL102A strain also exhibits a cell shape change, a lack of volume change in response to temperature increase and becomes more sensitive to ethanol, a hallmark of defects in the PKC/WSC cell wall integrity pathway. In addition, a striking change in actin dynamics and a complete cell cycle arrest at G1 phase occur in tsL102A cells at restrictive temperature. The temperature-sensitivity of tsL102A strain is due to a rapid loss of mutant eIF5A with the half-life reduced from 6 h at permissive temperature to 20 min at restrictive temperature. Phenylmethyl sulfonylfluoride (PMSF), an irreversible inhibitor of serine protease, inhibited the degradation of mutant eIF5A and suppressed the temperature-sensitive growth arrest. Sorbitol, an osmotic stabilizer that complement defects in PKC/WSC pathways, stabilizes the mutant eIF5A and suppresses all the observed temperature-sensitive phenotypes.