23 resultados para Sewage disposal
em Aston University Research Archive
Resumo:
The present study attempted to identify the significant parameters which affect radionuclide migration from a low level radioactive waste disposal site located in a clay deposit. From initial sorption studies on smectite minerals, increased Kd with decreasing initial cation concentration was observed, and three sorption mechanisms were identified. The observation of anion dependent sorption was related to the existence of a mechanism in which an anion-cation pair are bound to the clay surface through the anion. The influence of competing cations, typical of inorganic groundwater constituents, depended on: (1) Ni/Co:Mn+(Mn+ = competing cation) ratio, (2) nature of M^n+, (3) total solution ionic strength. The presence of organic material in groundwater is well documented, but its effect on cation sorption has not been established. An initial qualitative investigation involving addition of simple organic ligands to Ni(Co)-hectorite samples demonstrated the formation of metal complexes in the clay interlayers, although some modified behaviour was observed. Further quantitative examination involving likely groundwater organic constituents and more comprehensive physical investigation confirmed this behaviour and enabled separation of the organic compounds used into two classes, according to their effect on cation sorption; (i) acids, (ii) amine compounds. X-ray photoelectron spectroscopy, scanning electron microscopy and Mossbauer spectroscopy were used to investigate the nature of transition metal ions sorbed onto montmorillonite and hectorite. Evidence strongly favoured the sorption of the hexaaquo cation, although a series of sorption sites of slightly different chemical characteristics were responsible for broadened peak widths observed in XPS and Mossbauer investigations. The surface sensitivity of XPS enabled recognition of the two surface sorption sites proposed in earlier sorption studies. Although thermal treatment of Fe^3+/Fe^2+-hectorite samples left iron atoms bonded to the silicate sheet structure, Mossbauer evidence indicated the presence of both ferric and ferrous iron in all samples.
Resumo:
Many local authorities (LAs) are currently working to reduce both greenhouse gas emissions and the amount of municipal solid waste (MSW) sent to landfill. The recovery of energy from waste (EfW) can assist in meeting both of these objectives. The choice of an EfW policy combines spatial and non-spatial decisions which may be handled using Multi-Criteria Analysis (MCA) and Geographic Information Systems (GIS). This paper addresses the impact of transporting MSW to EfW facilities, analysed as part of a larger decision support system designed to make an overall policy assessment of centralised (large-scale) and distributed (local-scale) approaches. Custom-written ArcMap extensions are used to compare centralised versus distributed approaches, using shortest-path routing based on expected road speed. Results are intersected with 1-kilometre grids and census geographies for meaningful maps of cumulative impact. Case studies are described for two counties in the United Kingdom (UK); Cornwall and Warwickshire. For both case study areas, centralised scenarios generate more traffic, fuel costs and emitted carbon per tonne of MSW processed.
Resumo:
The suitability of a new plastic supporting medium for biofiltration was tested over a three year period. Tests were carried out on the stability, surface properties, mechanical strength, and dimensions of the medium. There was no evidence to suggest that the medium was deficient in any of these respects. The specific surface (320m2m-3) and the voidage (94%) of the new medium are unlike any other used in bio-filtration and a pilot plant containing two filters was built to observe its effects on ecology and performance. Performance was estimated by chemical analysis and ecology studied by film examination and fauna counts. A system of removable sampling baskets was designed to enable samples to be obtained from two intermediate depths of filter. One of the major operating problems of percolating filters is excessive accumulation of film. The amount of film is influenced by hydraulic and organic load and each filter was run at a different loading. One was operated at 1.2m3m-3day-1 (DOD load 0.24kgm-3day-1) judged at the time to be the lowest filtration rate to offer advantages over conventional media. The other filter was operated at more than twice this loading (2.4m3m-3day-lBOD load 0.55kgm-3day-1) giving a roughly 2.5x and 6x the conventional loadings recommended for a Royal Commission effluent. The amount of film in each filter was normally low (0.05-3kgm(3 as volatile solids) and did not affect efficiency. The evidence collected during the study indicated that the ecology of the filters was normal when compared with the data obtained from the literature relating to filters with mineral media. There were indications that full ecological stability was yet to be reached and this was affecting the efficiency of the filters. The lower rate filter produced an average 87% BOD removal giving a consistent Royal Commission effluent during the summer months. The higher rate filter produced a mean 83% BOD removal but at no stage a consistent Royal Commission effluent. From the data on ecology and performance the filters resembled conventional filters rather than high rate filters.
Resumo:
A procedure has been developed which measures the settling velocity distribution of particles within a complete sewage sample. The development of the test method included observations of particle and liquid interaction using both synthetic media and sewage. Comparison studies with two other currently used settling velocity test procedures was undertaken. The method is suitable for use with either DWF or storm sewage. Information relating to the catchment characteristics of 35 No. wastewater treatment works was collected from the privatised water companies in England and Wales. 29 No. of these sites were used in an experimental programme to determine the settling velocity grading of 33 No. sewage samples. The collected data were analysed in an attempt to relate the settling velocity distribution to the characteristics of the contributing catchment. Statistical analysis of the catchment data and the measured settling velocity distributions was undertaken. A curve fitting exercise using an S-shaped curve which had the same physical characteristics as the settling velocity distributions was performed. None of these analyses found evidence that the settling velocity distribution of sewage had a significant relationship with the chosen catchment characteristics. The regression equations produced from the statistical analysis cannot be used to assist in the design of separation devices. However, a grading curve envelope was produced, the limits of which were clearly defined for the measured data set. There was no evidence of a relationship between settling velocity grading and the characteristics of the contributing catchment, particularly the catchment area. The present empirical approach to settling tank design cannot be improved upon at present by considering the variation in catchment parameters. This study has provided a basis for future research into the settling velocity measurement and should be of benefit to future workers within this field.
Resumo:
A methodology has been developed to measure the chemical constituents associated with the settling velocity fractions that comprise a wastewater settling velocity profile (SVP). 31 wastewater samples were collected from fifteen different catchments in England and Wales. For each catchment, settling velocity and associated chemical constituent profiles were determined. The results are mainly for Suspended Solids (SS), Chemical Oxygen Demand (COD), Phosphorus (P) and Total Kjeadahl Nitrogen (TKN), however these are supplemented by the results from 5 events for a suite of heavy metals. COD, P, Hg, Mn and Pb were found to be predominantly associated with the solid phase and TKN, Al, Cu and Fe with the liquor phase of the wastewater samples. The results in the thesis are expressed as mass of pollutant (g) per mass total SS (kg). COD and P were found to be mainly associated with the sinkers and had a particular affinity for solids with settling velocities in the range 0.9-9.03mm/sec. TKN was mainly associated with the soluble phase, however of the solids that did settle, a peak was found to be associated within the settling velocity range 0.9-9.03mm/sec. The relationships identified for COD and P were generally found to be unaffected by flow conditions and catchment characteristics. However, TKN was found to be affected by catchment type. Data on the distribution of heavy metals was limited, and no specific relationships with solids were identified. 16 mean pollutant profiles are presented in the thesis. Presentation of the data in this form will enable the results to be of use in the design of sedimentation devices to predict removal efficiencies for solids and associated pollutants. The findings of the research may also be applied to modelling tools to provide further characteristics on the solids that are modelled than is currently used. This would enhance the overall performance of tools used in integrated catchment modelling.
Resumo:
Sewage sludge was pyrolysed with 40% mixed wood, 40% rapeseed and 40% straw. The reason for the mixture of different biomass is to investigate the impact of co-pyrolysis on the upper phase of bio-oil in terms of changes to composition, elemental analysis, viscosity, water content, pH, higher heating value and acid number that could impact on their applications. The biomass was pyrolysed in a laboratory at 450 °C and bio-oil was collected from two cooling traps. The bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw was analysed for composition using the gas chromatography mass spectrometry. The upper phase from the co-pyrolysis process was also characterised for ultimate analysis, higher heating values, water content, viscosity, pH and acid number. There was an increase in the amount of upper phase produced with co-pyrolysis of 40% rapeseed. It was also found that the upper phase from sewage sludge with mixed wood has the highest viscosity, acid number and lowest pH. The bio-oil containing 40% straw was found to have a pH of 6.5 with a very low acid number while the 40% rapeseed was found to have no acid number. Sewage sludge with 40% rapeseed was found to have the highest energy content of 34.8 MJ/kg, 40% straw has 32.5 MJ/kg while the 40% mixed wood pyrolysis oil has the lowest energy content of 31.3 MJ/kg. The 40% rapeseed fraction was found to have the highest water content of 8.2% compared to other fractions.