4 resultados para Sewage -- Analysis
em Aston University Research Archive
Resumo:
The suitability of a new plastic supporting medium for biofiltration was tested over a three year period. Tests were carried out on the stability, surface properties, mechanical strength, and dimensions of the medium. There was no evidence to suggest that the medium was deficient in any of these respects. The specific surface (320m2m-3) and the voidage (94%) of the new medium are unlike any other used in bio-filtration and a pilot plant containing two filters was built to observe its effects on ecology and performance. Performance was estimated by chemical analysis and ecology studied by film examination and fauna counts. A system of removable sampling baskets was designed to enable samples to be obtained from two intermediate depths of filter. One of the major operating problems of percolating filters is excessive accumulation of film. The amount of film is influenced by hydraulic and organic load and each filter was run at a different loading. One was operated at 1.2m3m-3day-1 (DOD load 0.24kgm-3day-1) judged at the time to be the lowest filtration rate to offer advantages over conventional media. The other filter was operated at more than twice this loading (2.4m3m-3day-lBOD load 0.55kgm-3day-1) giving a roughly 2.5x and 6x the conventional loadings recommended for a Royal Commission effluent. The amount of film in each filter was normally low (0.05-3kgm(3 as volatile solids) and did not affect efficiency. The evidence collected during the study indicated that the ecology of the filters was normal when compared with the data obtained from the literature relating to filters with mineral media. There were indications that full ecological stability was yet to be reached and this was affecting the efficiency of the filters. The lower rate filter produced an average 87% BOD removal giving a consistent Royal Commission effluent during the summer months. The higher rate filter produced a mean 83% BOD removal but at no stage a consistent Royal Commission effluent. From the data on ecology and performance the filters resembled conventional filters rather than high rate filters.
Resumo:
A procedure has been developed which measures the settling velocity distribution of particles within a complete sewage sample. The development of the test method included observations of particle and liquid interaction using both synthetic media and sewage. Comparison studies with two other currently used settling velocity test procedures was undertaken. The method is suitable for use with either DWF or storm sewage. Information relating to the catchment characteristics of 35 No. wastewater treatment works was collected from the privatised water companies in England and Wales. 29 No. of these sites were used in an experimental programme to determine the settling velocity grading of 33 No. sewage samples. The collected data were analysed in an attempt to relate the settling velocity distribution to the characteristics of the contributing catchment. Statistical analysis of the catchment data and the measured settling velocity distributions was undertaken. A curve fitting exercise using an S-shaped curve which had the same physical characteristics as the settling velocity distributions was performed. None of these analyses found evidence that the settling velocity distribution of sewage had a significant relationship with the chosen catchment characteristics. The regression equations produced from the statistical analysis cannot be used to assist in the design of separation devices. However, a grading curve envelope was produced, the limits of which were clearly defined for the measured data set. There was no evidence of a relationship between settling velocity grading and the characteristics of the contributing catchment, particularly the catchment area. The present empirical approach to settling tank design cannot be improved upon at present by considering the variation in catchment parameters. This study has provided a basis for future research into the settling velocity measurement and should be of benefit to future workers within this field.
Resumo:
Sewage sludge was pyrolysed with 40% mixed wood, 40% rapeseed and 40% straw. The reason for the mixture of different biomass is to investigate the impact of co-pyrolysis on the upper phase of bio-oil in terms of changes to composition, elemental analysis, viscosity, water content, pH, higher heating value and acid number that could impact on their applications. The biomass was pyrolysed in a laboratory at 450 °C and bio-oil was collected from two cooling traps. The bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw was analysed for composition using the gas chromatography mass spectrometry. The upper phase from the co-pyrolysis process was also characterised for ultimate analysis, higher heating values, water content, viscosity, pH and acid number. There was an increase in the amount of upper phase produced with co-pyrolysis of 40% rapeseed. It was also found that the upper phase from sewage sludge with mixed wood has the highest viscosity, acid number and lowest pH. The bio-oil containing 40% straw was found to have a pH of 6.5 with a very low acid number while the 40% rapeseed was found to have no acid number. Sewage sludge with 40% rapeseed was found to have the highest energy content of 34.8 MJ/kg, 40% straw has 32.5 MJ/kg while the 40% mixed wood pyrolysis oil has the lowest energy content of 31.3 MJ/kg. The 40% rapeseed fraction was found to have the highest water content of 8.2% compared to other fractions.
Resumo:
The stability of the oil phase obtained from intermediate pyrolysis process was used for this investigation. The analysis was based on standard methods of determining kinematic viscosity, gas - chromatography / mass - spectrometry for compositional changes, FT-IR for functional group, Karl Fischer titration for water content and bomb calorimeter for higher heaating values. The methods were used to determine changes that occurred during ageing. The temperatures used for thermal testing were 60 °C and 80 °C for the periods of 72 and 168 h. Methanol and biodiesel were used as solvents for the analysis. The bio-oil samples contained 10 % methanol, 10 % Biodiesel, 20 % Biodiesel and unstabilised pyrolysis oil. The tests carried out at 80 °C showed drastic changes compared to those at 60 °C. The bio-oil samples containing 20 % biodiesel proved to be more stable than those with 10 % methanol. The unstabilised pyrolysis oil showed the greatest changes in viscosity, composition change and highest increase in water content. The measurement of kinematic viscosity and gas chromatograph mass spectrometry were found to be more reliable for predicting the ageing process.