2 resultados para Sensory profiles

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background & Aims: Esophageal hypersensitivity is thought to be important in the generation and maintenance of symptoms in noncardiac chest pain (NCCP). In this study, we explored the neurophysiologic basis of esophageal hypersensitivity in a cohort of NCCP patients. Methods: We studied 12 healthy controls (9 women; mean age, 37.1 ± 8.7 y) and 32 NCCP patients (23 women; mean age, 47.2 ± 10 y). All had esophageal manometry, esophageal evoked potentials to electrical stimulation, and NCCP patients had 24-hour ambulatory pH testing. Results: The NCCP patients had reduced pain thresholds (PT) (72.1 ± 19.4 vs 54.2 ± 23.6, P = .02) and increased P1 latencies (P1 = 105.5 ± 11.1 vs 118.1 ± 23.4, P = .02). Subanalysis showed that the NCCP group could be divided into 3 distinct phenotypic classifications. Group 1 had reduced pain thresholds in conjunction with normal/reduced latency P1 latencies (n = 9). Group 2 had reduced pain thresholds in conjunction with increased (>2.5 SD) P1 latencies (n = 7), and group 3 had normal pain thresholds in conjunction with either normal (n = 10) or increased (>2.5 SD, n = 3) P1 latencies. Conclusions: Normal esophageal evoked potential latencies with reduced PT, as seen in group 1 patients, is indicative of enhanced afferent transmission and therefore increased esophageal afferent pathway sensitivity. Increased esophageal evoked potential latencies with reduced PT in group 2 patients implies normal afferent transmission to the cortex but heightened secondary cortical processing of this information, most likely owing to psychologic factors such as hypervigilance. This study shows that NCCP patients with esophageal hypersensitivity may be subclassified into distinct phenotypic subclasses based on sensory responsiveness and objective neurophysiologic profiles. © 2006 by the American Gastroenterological Association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auditory sensory gating (ASG) is the ability in individuals to suppress incoming irrelevant sensory input, indexed by evoked response to paired auditory stimuli. ASG is impaired in psychopathology such as schizophrenia, in which it has been proposed as putative endophenotype. This study aims to characterise electrophysiological properties of the phenomenon using MEG in time and frequency domains as well as to localise putative networks involved in the process at both sensor and source level. We also investigated the relationship between ASG measures and personality profiles in healthy participants in the light of its candidate endophenotype role in psychiatric disorders. Auditory evoked magnetic fields were recorded in twenty seven healthy participants by P50 ‘paired-click’ paradigm presented in pairs (conditioning stimulus S1- testing stimulus S2) at 80dB, separated by 250msec with inter trial interval of 7-10 seconds. Gating ratio in healthy adults ranged from 0.5 to 0.8 suggesting dimensional nature of P50 ASG. The brain regions active during this process were bilateral superior temporal gyrus (STG) and bilateral inferior frontal gyrus (IFG); activation was significantly stronger in IFG during S2 as compared to S1 (at p<0.05). Measures of effective connectivity between these regions using DCM modelling revealed the role of frontal cortex in modulating ASG as suggested by intracranial studies, indicating major role of inhibitory interneuron connections. Findings from this study identified a unique event-related oscillatory pattern for P50 ASG with alpha (STG)-beta (IFG) desynchronization and increase in cortical oscillatory gamma power (IFG) during S2 condition as compared to S1. These findings show that the main generator for P50 response is within temporal lobe and that inhibitory interneurons and gamma oscillations in the frontal cortex contributes substantially towards sensory gating. Our findings also show that ASG is a predictor of personality profiles (introvert vs extrovert dimension).