10 resultados para Semiconductors orgànics
em Aston University Research Archive
Resumo:
In an attempt to clarify the behaviour of semi-conductor field emitters the properties of a narrow band gap material were investigated. A retarding potential analyser was built and tested using a tungsten emitter. The energy distribution of electrons emitted from single crystals of lead telluride (band gap 0.3 eV) and gallium phosphide (band gap 2.26 eV) were measured. The halfwidths of the distributions are discussed with respect to the relevant parameters for the materials. Methods of tip preparation had to be developed. The halfwidth of the energy distribution of electrons field emitted from carbon fibres was measured to be 0.21 ± 0.01 eV. A mechanism explaining the long lifetime of the emitters in poor vacuua is proposed.
Resumo:
The effect of low energy nitrogen molecular ion beam bombardment on metals and compound semiconductors has been studied, with the aim to investigate at the effects of ion and target properties. For this purpose, nitrogen ion implantation in aluminium, iron, copper, gold, GaAs and AIGaAs is studied using XPS and Angle Resolve XPS. A series of experimental studies on N+2 bombardment induced compositional changes, especially the amount of nitrogen retained in the target, were accomplished. Both monoenergetic implantation and non-monoenergetic ion implantation were investigated, using the VG Scientific ESCALAB 200D system and a d. c. plasma cell, respectively. When the samples, with the exception of gold, are exposed to air, native oxide layers are formed on the surfaces. In the case of monoenergetic implantation, the surfaces were cleaned using Ar+ beam bombardment prior to implantation. The materials were then bombarded with N2+ beam and eight sets of successful experiments were performed on each sample, using a rastered N2+ ion beam of energy of 2, 3, 4 and 5 keV with current densities of 1 μA/cm2 and 5 μA/cm22 for each energy. The bombarded samples were examined by ARXPS. After each complete implantation, XPS depth profiles were created using Ar+ beam at energy 2 ke V and current density 2 μA/cm2 . As the current density was chosen as one of the parameters, accurate determination of current density was very important. In the case of glow discharge, two sets of successful experiments were performed in each case, by exposing the samples to nitrogen plasma for the two conditions: at low pressure and high voltage and high pressure and low voltage. These samples were then examined by ARXPS. On the theoretical side, the major problem was prediction of the number of ions of an element that can be implanted in a given matrix. Although the programme is essentially on experimental study, but an attempt is being made to understand the current theoretical models, such as SATVAL, SUSPRE and TRIM. The experimental results were compared with theoretical predictions, in order to gain a better understanding of the mechanisms responsible. From the experimental results, considering possible experimental uncertainties, there is no evidence of significant variation in nitrogen saturation concentration with ion energy or ion current density in the range of 2-5 ke V, however, the retention characteristics of implantant seem to strongly depend on the chemical reactivity between ion species and target material. The experimental data suggests the presence of at least one thermal process. The discrepancy between the theoretical and experimental results could be the inability of the codes to account for molecular ion impact and thermal processes.
Resumo:
There is an urgent need for fast, non-destructive and quantitative two-dimensional dopant profiling of modern and future ultra large-scale semiconductor devices. The low voltage scanning electron microscope (LVSEM) has emerged to satisfy this need, in part, whereby it is possible to detect different secondary electron yield values (brightness in the SEM signal) from the p-type to the n-type doped regions as well as different brightness levels from the same dopant type. The mechanism that gives rise to such a secondary electron (SE) contrast effect is not fully understood, however. A review of the different models that have been proposed to explain this SE contrast is given. We report on new experiments that support the proposal that this contrast is due to the establishment of metal-to-semiconductor surface contacts. Further experiments showing the effect of instrument parameters including the electron dose, the scan speeds and the electron beam energy on the SE contrast are also reported. Preliminary results on the dependence of the SE contrast on the existence of a surface structure featuring metal-oxide semiconductor (MOS) are also reported. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
It was decided to investigate field emission from cadmium sulphide because many workers have found that the agreement between theory and experiment for this material, and other semiconductors, is poor. An electron energy analyser, similar to those used in most of the previously reported experiments, was, therefore, built. The performance of the analyser was thoroughly investigated both theoretically and practically and the results of these investigations were used in conjunction with a tungsten emitter. Excellent agreement was obtained between the usually accepted total energy distribution for tungsten and the corresponding .distribution measured with the present analyser. A method of obtaining reliable cadmium sulphide emitter was developed. These emitters were then used in the analyser and it was found that the agreement between theory and experiment was poor. Previous explanations of the lack of agreement are considered and are found to be doubtful. The theory of field emission from semiconductors is reviewed and possible reasons for the discrepancy between theory and experiment are proposed. Finally, further experiments are described which should prove or disprove the conclusions arrived at in this work.
Resumo:
Surface compositional change of GaP, GaAs, GaSb, InP, InAs, InSb, GeSi and CdSe single crystals due to low keV noble gas ion beam bombardment has been investigated by combining X-ray Photoelectron Spectroscopy (XPS) and Low Energy Ion Scattering Spectroscopy (LEISS). The purpose of using this complementary analytical method is to obtain more complete experimental evidence of ion beam modification in surfaces of compound semiconductors and GeSi alloy to improve the understanding of the mechanisms responsible for these effects. Before ion bombardment the sample surfaces were analysed nondestructively by Angular Resolved XPS (ARXPS) and LEISS to get the initial distribution of surface composition. Ion bombardment experiments were carried out using 3keV argon ions with beam current of 1μA for a period of 50 minutes, compositional changes in the surfaces of compound semiconductors and GeSi alloy were monitored with normal XPS. After ion bombardment the surfaces were re-examined with ARXPS and LEISS. Both XPS and LEISS results showed clearly that ion bombardment will change the compositional distribution in the compound semiconductor and GeSi surfaces. In order to explain the observed experimental results, two major theories in this field, Sigmund linear collision cascade theory and the thermodynamic models based on bombardment induced Gibbsian surface segregation and diffusion, were investigated. Computer simulation using TRIM code was also carried out for assistance to the theoretical analysis. Combined the results obtained from XPS and LEISS analyses, ion bombardment induced compositional changes in compound semiconductor and GeSi surfaces are explained in terms of the bombardment induced Gibbsian surface segregation and diffusion.
Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires
Resumo:
The growth of heteroepitaxially strained semiconductors at the nanoscale enables tailoring of material properties for enhanced device performance. For core/shell nanowires (NWs), theoretical predictions of the coherency limits and the implications they carry remain uncertain without proper identification of the mechanisms by which strains relax. We present here for the Ge/Si core/shell NW system the first experimental measurement of critical shell thickness for strain relaxation in a semiconductor NW heterostructure and the identification of the relaxation mechanisms. Axial and tangential strain relief is initiated by the formation of periodic a/2 〈110〉 perfect dislocations via nucleation and glide on {111} slip-planes. Glide of dislocation segments is directly confirmed by real-time in situ transmission electron microscope observations and by dislocation dynamics simulations. Further shell growth leads to roughening and grain formation which provides additional strain relief. As a consequence of core/shell strain sharing in NWs, a 16 nm radius Ge NW with a 3 nm Si shell is shown to accommodate 3% coherent strain at equilibrium, a factor of 3 increase over the 1 nm equilibrium critical thickness for planar Si/Ge heteroepitaxial growth. © 2012 American Chemical Society.
Resumo:
Resonant and non resonant spin dependent photoconductivity is observed in(100) silicon films grown on sapphire by CVD and MBE techniques. The CVD films are either in their as-grown state or have undergone single or double solid phase epitaxial regrowth. For all samples, a resonant decrease in photoconductivity is observed at a field of about 0.34 T for a microwave frequency of about 9.7 GHz and at about 3.3 mT when the frequency is about 92 MHz. For all samples the maximum fractional change in photoconductivity is approximately 10-4 independent of magnetic field strength.
Resumo:
Insulated gate bipolar transistor (IGBT) modules are important safety critical components in electrical power systems. Bond wire lift-off, a plastic deformation between wire bond and adjacent layers of a device caused by repeated power/thermal cycles, is the most common failure mechanism in IGBT modules. For the early detection and characterization of such failures, it is important to constantly detect or monitor the health state of IGBT modules, and the state of bond wires in particular. This paper introduces eddy current pulsed thermography (ECPT), a nondestructive evaluation technique, for the state detection and characterization of bond wire lift-off in IGBT modules. After the introduction of the experimental ECPT system, numerical simulation work is reported. The presented simulations are based on the 3-D electromagnetic-thermal coupling finite-element method and analyze transient temperature distribution within the bond wires. This paper illustrates the thermal patterns of bond wires using inductive heating with different wire statuses (lifted-off or well bonded) under two excitation conditions: nonuniform and uniform magnetic field excitations. Experimental results show that uniform excitation of healthy bonding wires, using a Helmholtz coil, provides the same eddy currents on each, while different eddy currents are seen on faulty wires. Both experimental and numerical results show that ECPT can be used for the detection and characterization of bond wires in power semiconductors through the analysis of the transient heating patterns of the wires. The main impact of this paper is that it is the first time electromagnetic induction thermography, so-called ECPT, has been employed on power/electronic devices. Because of its capability of contactless inspection of multiple wires in a single pass, and as such it opens a wide field of investigation in power/electronic devices for failure detection, performance characterization, and health monitoring.
Resumo:
Compact and tunable semiconductor terahertz sources providing direct electrical control, efficient operation at room temperatures and device integration opportunities are of great interest at the present time. One of the most well-established techniques for terahertz generation utilises photoconductive antennas driven by ultrafast pulsed or dual wavelength continuous wave laser systems, though some limitations, such as confined optical wavelength pumping range and thermal breakdown, still exist. The use of quantum dot-based semiconductor materials, having unique carrier dynamics and material properties, can help to overcome limitations and enable efficient optical-to-terahertz signal conversion at room temperatures. Here we discuss the construction of novel and versatile terahertz transceiver systems based on quantum dot semiconductor devices. Configurable, energy-dependent optical and electronic characteristics of quantum-dot-based semiconductors are described, and the resonant response to optical pump wavelength is revealed. Terahertz signal generation and detection at energies that resonantly excite only the implanted quantum dots opens the potential for using compact quantum dot-based semiconductor lasers as pump sources. Proof-of-concept experiments are demonstrated here that show quantum dot-based samples to have higher optical pump damage thresholds and reduced carrier lifetime with increasing pump power.