19 resultados para Semi-Analytic Solution

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the problem of on-line gradient descent learning for general two-layer neural networks. An analytic solution is presented and used to investigate the role of the learning rate in controlling the evolution and convergence of the learning process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an analytic solution to the problem of on-line gradient-descent learning for two-layer neural networks with an arbitrary number of hidden units in both teacher and student networks. The technique, demonstrated here for the case of adaptive input-to-hidden weights, becomes exact as the dimensionality of the input space increases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work described in this thesis deals with the development and application of a finite element program for the analysis of several cracked structures. In order to simplify the organisation of the material presented herein, the thesis has been subdivided into two Sections : In the first Section the development of a finite element program for the analysis of two-dimensional problems of plane stress or plane strain is described. The element used in this program is the six-mode isoparametric triangular element which permits the accurate modelling of curved boundary surfaces. Various cases of material aniftropy are included in the derivation of the element stiffness properties. A digital computer program is described and examples of its application are presented. In the second Section, on fracture problems, several cracked configurations are analysed by embedding into the finite element mesh a sub-region, containing the singularities and over which an analytic solution is used. The modifications necessary to augment a standard finite element program, such as that developed in Section I, are discussed and complete programs for each cracked configuration are presented. Several examples are included to demonstrate the accuracy and flexibility of the technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The finite element process is now used almost routinely as a tool of engineering analysis. From early days, a significant effort has been devoted to developing simple, cost effective elements which adequately fulfill accuracy requirements. In this thesis we describe the development and application of one of the simplest elements available for the statics and dynamics of axisymmetric shells . A semi analytic truncated cone stiffness element has been formulated and implemented in a computer code: it has two nodes with five degrees of freedom at each node, circumferential variations in displacement field are described in terms of trigonometric series, transverse shear is accommodated by means of a penalty function and rotary inertia is allowed for. The element has been tested in a variety of applications in the statics and dynamics of axisymmetric shells subjected to a variety of boundary conditions. Good results have been obtained for thin and thick shell cases .

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study solutions of the nonlinear Schrödinger equation (NLSE) with gain, describing optical pulse propagation in an amplifying medium. We construct a semiclassical self-similar solution with a parabolic temporal variation that corresponds to the energy-containing core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core through Painlevé functions to the solution of the linearized equation that corresponds to the low-amplitude tails of the pulse. The analytic solution accurately reproduces the numerically calculated solution of the NLSE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study solutions of the nonlinear Schrödinger equation (NLSE) with gain, describing optical pulse propagation in an amplifying medium. We construct a semiclassical self-similar solution with a parabolic temporal variation that corresponds to the energy-containing core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core through Painlevé functions to the solution of the linearized equation that corresponds to the low-amplitude tails of the pulse. The analytic solution accurately reproduces the numerically calculated solution of the NLSE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have measured the longitudinal power distribution inside a random distributed feedback Raman fiber laser. The observed distribution has a sharp maximum whose position depends on pump power. The spatial distribution profiles are different for the first and the second Stokes waves. Both analytic solution and results of direct numerical modeling are in excellent agreement with experimental observations. © 2012 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have measured the longitudinal power distribution inside a random distributed feedback fiber laser. Both analytic solution and results of direct numerical modeling are in excellent agreement with experimental observations. © 2012 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports the findings of three studies examining relationship status and identity construction in the talk of heterosexual women, from a feminist and social constructionist perspective. Semi-structured interviews were conducted with 12 women in study 1 and 13 women for study 2, between the ages of twenty and eighty-seven, discussing their experiences of relationships. All interviews were transcribed and analysed using discourse analysis, by hand and using the Nudist 6 program. The resulting themes create distinct age-related marital status expectations. Unmarried women were aware they had to marry by a ‘certain age’ or face a ‘lonely spinsterhood’. Through marriage women gained a socially accepted position associated with responsibility for others, self-sacrifice, a home-focused lifestyle and relational identification. Divorce was constructed as the consequence of personal faults and poor relationship care, reassuring the married of their own control over their status. Older unmarried women were constructed as deviant and pitiable, occupying social purgatory as a result of transgressing these valued conventions. Study 3 used repertory grid tasks, with 33 women, analysing transcripts and notes alongside numerical data using Web Grid II internet analysis tool, to produce principle components maps demonstrating the relationships between relationship terms and statuses. This study illuminated the consistency with which women of different ages and status saw marriage as their ideal living situation and outlined the domestic responsibilities associated. Spinsters and single-again women were defined primarily by their lack of marriage and by loneliness. This highlighted the devalued position of older unmarried women. The results of these studies indicated a consistent set of age-related expectations of relationship status, acknowledged by women and reinforced by their families and friends, which render many unmarried women deviant and fail to acknowledge the potential variety of women’s ways of living.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite region with a bounded inclusion, i.e. the region is the intersection between a half-plane and the exterior of a bounded closed curve contained in the half-plane. The Cauchy data are given on the unbounded part of the boundary of the region and the aim is to construct the solution on the boundary of the inclusion. In 1989, Kozlov and Maz'ya [10] proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems in bounded domains. We extend their approach to our setting and in each iteration step mixed boundary value problems for the Laplace equation in the semi-infinite region are solved. Well-posedness of these mixed problems are investigated and convergence of the alternating procedure is examined. For the numerical implementation an efficient boundary integral equation method is proposed, based on the indirect variant of the boundary integral equation approach. The mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing the feasibility of the proposed method.