4 resultados para Semantic extraction

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main argument of this paper is that Natural Language Processing (NLP) does, and will continue to, underlie the Semantic Web (SW), including its initial construction from unstructured sources like the World Wide Web (WWW), whether its advocates realise this or not. Chiefly, we argue, such NLP activity is the only way up to a defensible notion of meaning at conceptual levels (in the original SW diagram) based on lower level empirical computations over usage. Our aim is definitely not to claim logic-bad, NLP-good in any simple-minded way, but to argue that the SW will be a fascinating interaction of these two methodologies, again like the WWW (which has been basically a field for statistical NLP research) but with deeper content. Only NLP technologies (and chiefly information extraction) will be able to provide the requisite RDF knowledge stores for the SW from existing unstructured text databases in the WWW, and in the vast quantities needed. There is no alternative at this point, since a wholly or mostly hand-crafted SW is also unthinkable, as is a SW built from scratch and without reference to the WWW. We also assume that, whatever the limitations on current SW representational power we have drawn attention to here, the SW will continue to grow in a distributed manner so as to serve the needs of scientists, even if it is not perfect. The WWW has already shown how an imperfect artefact can become indispensable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we discuss how discriminative training can be applied to the hidden vector state (HVS) model in different task domains. The HVS model is a discrete hidden Markov model (HMM) in which each HMM state represents the state of a push-down automaton with a finite stack size. In previous applications, maximum-likelihood estimation (MLE) is used to derive the parameters of the HVS model. However, MLE makes a number of assumptions and unfortunately some of these assumptions do not hold. Discriminative training, without making such assumptions, can improve the performance of the HVS model by discriminating the correct hypothesis from the competing hypotheses. Experiments have been conducted in two domains: the travel domain for the semantic parsing task using the DARPA Communicator data and the Air Travel Information Services (ATIS) data and the bioinformatics domain for the information extraction task using the GENIA corpus. The results demonstrate modest improvements of the performance of the HVS model using discriminative training. In the travel domain, discriminative training of the HVS model gives a relative error reduction rate of 31 percent in F-measure when compared with MLE on the DARPA Communicator data and 9 percent on the ATIS data. In the bioinformatics domain, a relative error reduction rate of 4 percent in F-measure is achieved on the GENIA corpus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivation: In molecular biology, molecular events describe observable alterations of biomolecules, such as binding of proteins or RNA production. These events might be responsible for drug reactions or development of certain diseases. As such, biomedical event extraction, the process of automatically detecting description of molecular interactions in research articles, attracted substantial research interest recently. Event trigger identification, detecting the words describing the event types, is a crucial and prerequisite step in the pipeline process of biomedical event extraction. Taking the event types as classes, event trigger identification can be viewed as a classification task. For each word in a sentence, a trained classifier predicts whether the word corresponds to an event type and which event type based on the context features. Therefore, a well-designed feature set with a good level of discrimination and generalization is crucial for the performance of event trigger identification. Results: In this article, we propose a novel framework for event trigger identification. In particular, we learn biomedical domain knowledge from a large text corpus built from Medline and embed it into word features using neural language modeling. The embedded features are then combined with the syntactic and semantic context features using the multiple kernel learning method. The combined feature set is used for training the event trigger classifier. Experimental results on the golden standard corpus show that >2.5% improvement on F-score is achieved by the proposed framework when compared with the state-of-the-art approach, demonstrating the effectiveness of the proposed framework. © 2014 The Author 2014. The source code for the proposed framework is freely available and can be downloaded at http://cse.seu.edu.cn/people/zhoudeyu/ETI_Sourcecode.zip.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most existing approaches to Twitter sentiment analysis assume that sentiment is explicitly expressed through affective words. Nevertheless, sentiment is often implicitly expressed via latent semantic relations, patterns and dependencies among words in tweets. In this paper, we propose a novel approach that automatically captures patterns of words of similar contextual semantics and sentiment in tweets. Unlike previous work on sentiment pattern extraction, our proposed approach does not rely on external and fixed sets of syntactical templates/patterns, nor requires deep analyses of the syntactic structure of sentences in tweets. We evaluate our approach with tweet- and entity-level sentiment analysis tasks by using the extracted semantic patterns as classification features in both tasks. We use 9 Twitter datasets in our evaluation and compare the performance of our patterns against 6 state-of-the-art baselines. Results show that our patterns consistently outperform all other baselines on all datasets by 2.19% at the tweet-level and 7.5% at the entity-level in average F-measure.