10 resultados para Self-assembled Monolayers

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the effect of a range of monovalent sodium salts on the molecular equilibrium swelling of a simple synthetic microphase separated poly(methyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) (PMMA88-b-PDEA223-b-PMMA88) pH-responsive hydrogel. Sodium acetate, sodium chloride, sodium bromide, sodium iodide, sodium nitrate and sodium thiocyanate were selected for study at controlled ionic strength and pH; all salts are taken from the Hofmeister series (HS). The influence of the anions on the expansion of the hydrogel was found to follow the reverse order of the classical HS. The expansion ratio of the gel measured in solutions containing the simple sodium halide salts (NaCl, NaBr, and NaI) was found to be strongly related to parameters which describe the interaction of the ion with water; surface charge density, viscosity coefficient, and entropy of hydration. A global study which also included nonspherical ions (NaAce, NaNO3 and NaSCN) showed the strongest correlation with the viscosity coefficient. Our results are interpreted in terms of the Collins model,(1) where larger ions have more mobile water in the first hydration cage immediately surrounding the gel, therefore making them more adhesive to the surface of the stationary phase of the gel and ultimately reducing the level of expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300°C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400°C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the effect of silica addition on the structural, textural and acidic properties of an evaporation induced self-assembled (EISA) mesoporous alumina. Two silica addition protocols were applied while maintaining the EISA synthesis route. The first route is based on the addition of a Na-free colloidal silica suspension (Ludox®), and the second method consists of the co-hydrolysis of tetraethyl orthosilicate (TEOS) with aluminium tri-sec-butoxide, to favour a more intimate mixing of the Al- and Si-hydrolysed species. The properties of the so derived materials were compared to the SiO2-free counterpart. The SiO2 addition was always beneficial from a structural and textural standpoint. TEOS appears to have a truly promoting effect; the ordering, surface area and pore volume are all improved. For Ludox®, the enhancement comes from the formation of smaller pores by a densification of the structure. The crystallization of γ-alumina depends on the interaction between the Al- and Si-species in the mesophase. Ludox®-based materials achieved crystallization at 750 °C but the intimate mixing in the TEOS-based mesophases shows a suppression of the phase transformation by 50-100 °C, with respect to the SiO2-free counterpart. This reduces the textural features substantially. For all SiO2-modified materials, the enhancement in the surface area is not accompanied by a concomitant improvement of total acidity, and the formation of weak Lewis acid sites was promoted. These effects were ascribed to SiO2 migration to the surface that blocks part of the acidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient route to stabilize alumina mesophases derived from evaporation-induced self-assembly is reported after investigating various aspects in-depth: influence of the solvent (EtOH, s-BuOH, and t-BuOH) on the textural and structural properties of the mesophases based on aluminum tri-sec-butoxide (ATSB), synthesis reproducibility, role of nonvolatile acids, and the crystallization and thermal stability of the crystalline counterparts. Mesophase specific surface area and pore uniformity depend notably on the solvent; s-BuOH yields the highest surface area and pore uniformity. The optimal mesophase synthesis is reproducible with standard deviations in the textural parameters below 5%. The most pore-uniform mesophases from the three solvents were thermally activated at 1023 K to crystallize them into γ-alumina. The s-BuOH mesophase is remarkably thermally stable, retaining the mesoscopic wormhole order with 300 m2/g (0.45 cm3/g) and an increased acidic site density. These features are not obtained with EtOH or t-BuOH, where agglomerated γ-Al2O3 crystallites are formed with lower surface areas and broader pore size distributions. This was rationalized by the increase of the hydrolysis rate using EtOH and t-BuOH. t-BuOH dehydrates under the synthesis conditions or reacts with HCl, situations that increase the water concentration and rate of hydrolysis. It was found that EtOH exchanges rapidly, producing a highly reactive Al-ethoxide, thus enhancing the hydrolysis rate as well. Particle heterogeneity with random packing of fibrous and wormhole morphologies, attributed to the high hydrolysis rate, was observed for mesophases derived from both solvents. Such a low particle coordination favors coarsening with enlargement of the pore size distribution upon thermal treatment, explaining the lower thermal stability. Controlled hydrolysis and formation of low-polymerized Al species in s-BuOH are possibly responsible for the adequate assembly onto the surfactant. This was verified by the formation of a regular distribution of relatively size-uniform nanoparticles in the mesophase; high particle coordination prevents coarsening, favors densification, and maintains a relatively uniform pore size distribution upon thermal treatment. The acid removal in the evaporation is another key factor to promote network condensation in this route. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO 2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from 'breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO/H O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two series of poly(ethylene oxide)-tetrapeptide conjugates have been prepared using a “Click” reaction between an alkyne-modified tetra(phenylalanine) or tetra(valine) and various azide-terminated poly(ethylene oxide) (PEO) oligomers. Three different PEO precursors were used to prepare these conjugates, with number-average molecular weights of 350, 1200, and 1800 Da. Assembly of mPEO-F4-OEt and mPEO-V4-OEt conjugates was achieved by dialysis of a THF solution of the conjugate against water or by direct aqueous rehydration of a thin film. The PEO length has a profound effect on the outcome of the self-assembly, with the F4 conjugates giving rise to nanotubes, fibers, and wormlike micelles, respectively, as the length of the PEO block is increased. For the V4 series, the propensity to form ß-sheets dominates, and hence, the self-assembled structures are reminiscent of those formed by peptides alone, even at the longer PEO lengths. Thus, this systematic study demonstrates that the self-assembly of PEO-peptides depends on both the nature of the peptides and the relative PEO block length.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymer beads have attracted considerable interest for use in catalysis, drug delivery, and photo­nics due to their particular shape and surface morphology. Electrospinning, typically used for producing nanofibers, can also be used to fabricate polymer beads if the solution has a sufficiently low concentration. In this work, a novel approach for producing more uniform, intact beads is presented by electrospinning self-assembled block copolymer (BCP) solutions. This approach allows a relatively high polymer concentration to be used, yet with a low degree of entanglement between polymer chains due to microphase separation of the BCP in a selective solvent system. Herein, to demonstrate the technology, a well-studied polystyrene-poly(ethylene butylene)–polystyrene triblock copolymer is dissolved in a co-solvent system. The effect of solvent composition on the characteristics of the fibers and beads is intensively studied, and the mechanism of this fiber-to-bead is found to be dependent on microphase separation of the BCP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oligo(ethylene glycol) (OEG) thiol self-assembled monolayer (SAM) decorated gold nanoparticles (AuNPs) have potential applications in bionanotechnology due to their unique property of preventing the nonspecific absorption of protein on the colloidal surface. For colloid-protein mixtures, a previous study (Zhang et al. J. Phys. Chem. A 2007, 111, 12229) has shown that the OEG SAM-coated AuNPs become unstable upon addition of proteins (BSA) above a critical concentration, c*. This has been explained as a depletion effect in the two-component system. Adding salt (NaCl) can reduce the value of c*; that is, reduce the stability of the mixture. In the present work, we study the influence of the nature of the added salt on the stability of this two-component colloid-protein system. It is shown that the addition of various salts does not change the stability of either protein or colloid in solution in the experimental conditions of this work, except that sodium sulfate can destabilize the colloidal solutions. In the binary mixtures, however, the stability of colloid-protein mixtures shows significant dependence on the nature of the salt: chaotropic salts (NaSCN, NaClO4, NaNO3, MgCl2) stabilize the system with increasing salt concentration, while kosmotropic salts (NaCl, Na2SO4, NH4Cl) lead to the aggregation of colloids with increasing salt concentration. These observations indicate that the Hofmeister effect can be enhanced in two-component systems; that is, the modification of the colloidal interface by ions changes significantly the effective depletive interaction via proteins. Real time SAXS measurements confirm in all cases that the aggregates are in an amorphous state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new poly(ethylene oxide)-tetraphenylalanine polymer-peptide conjugate has been prepared via a “click” reaction between an alkyne-modified peptide and an azide-terminated PEO oligomer. Self-assembled nanotubes are formed after dialysis of a THF solution of this polymer-peptide conjugate against water. The structure of these nanotubes has been probed by circular dichroism, IR, TEM, and SAXS. From these data, it is apparent that self-assembly involves the formation of antiparallel ß-sheets and p-p-stacking. Nanotubes are formed at concentrations between 2 and 10 mg mL-1. Entanglement between adjacent nanotubes occurs at higher concentrations, resulting in the formation of soft hydrogels. Gel strength increases at higher polymer-peptide conjugate concentration, as expected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyzwitterionic-containing hydrogel materials been proposed for use in biomaterial applications. Polyzwitterions contain anions and cations in the same monomeric unit, unlike polyampholytes which contain them in different monomeric units. The use of cationic and anionic monomers in stoichiometrically equivalent proportions produces charge-balanced polyampholytes (PA) copolymers. Membranes prepared using either betaine-containing (BT) polyzwitterionic copolymers or PA copolymers can share similar properties, but the range of EWCs offered by membranes incorporating BT and PA monomers is greater than that for conventional neutral hydrogels and methacrylic acid-based systems. Here we compare properties of BT-containing and PA-containing copolymer membranes, relevant to their potential as biomedical materials. Membranes of the copolymers were prepared as previously described. Surface energy was determined using a GBX Digidrop (GBX Scientific Instruments), with diidomethane and water as probes. The absorption of proteins was determined by soaking the membranes in 1mg/ml protein solutions for a predetermined time, and measuring UV absorption of the membranes at certain wavelengths. The BT and PA copolymer membranes displayed similar values for the polar components and dispersive components of total surface free energy. This was perhaps not surprising when the structures of the monomers were considered. The BT and PA copolymer membranes displayed differences in their protein absorption over time, with the PA demonstrating higher uptake of protein than the BT. In addition to the aforementioned greater EWC range, the use of BT and PA copolymer membranes also avoids some of the problems associated with net anionicity. Comparison of the BT copolymer with the “pseudo” zwitterionic PA copolymers shows that controlled molecular architecture is required to gain the benefits of balancing the charges present in the copolymers in a way that will make them beneficial to hydrogel design.