13 resultados para Selection Problems

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The survival of organisations, especially SMEs, depends, to the greatest extent, on those who supply them with the required material input. This is because if the supplier fails to deliver the right materials at the right time and place, and at the right price, then the recipient organisation is bound to fail in its obligations to satisfy the needs of its customers, and to stay in business. Hence, the task of choosing a supplier(s) from a list of vendors, that an organisation will trust with its very existence, is not an easy one. This project investigated how purchasing personnel in organisations solve the problem of vendor selection. The investigation went further to ascertain whether an Expert Systems model could be developed and used as a plausible solution to the problem. An extensive literature review indicated that very scanty research has been conducted in the area of Expert Systems for Vendor Selection, whereas many research theories in expert systems and in purchasing and supply management chain, respectively, had been reported. A survey questionnaire was designed and circulated to people in the industries who actually perform the vendor selection tasks. Analysis of the collected data confirmed the various factors which are considered during the selection process, and established the order in which those factors are ranked. Five of the factors, namely, Production Methods Used, Vendors Financial Background, Manufacturing Capacity, Size of Vendor Organisations, and Suppliers Position in the Industry; appeared to have similar patterns in the way organisations ranked them. These patterns suggested that the bigger the organisation, the more importantly they regarded the above factors. Further investigations revealed that respondents agreed that the most important factors were: Product Quality, Product Price and Delivery Date. The most apparent pattern was observed for the Vendors Financial Background. This generated curiosity which led to the design and development of a prototype expert system for assessing the financial profile of a potential supplier(s). This prototype was called ESfNS. It determines whether a prospective supplier(s) has good financial background or not. ESNS was tested by the potential users who then confirmed that expert systems have great prospects and commercial viability in the domain for solving vendor selection problems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

When composing stock portfolios, managers frequently choose among hundreds of stocks. The stocks' risk properties are analyzed with statistical tools, and managers try to combine these to meet the investors' risk profiles. A recently developed tool for performing such optimization is called full-scale optimization (FSO). This methodology is very flexible for investor preferences, but because of computational limitations it has until now been infeasible to use when many stocks are considered. We apply the artificial intelligence technique of differential evolution to solve FSO-type stock selection problems of 97 assets. Differential evolution finds the optimal solutions by self-learning from randomly drawn candidate solutions. We show that this search technique makes large scale problem computationally feasible and that the solutions retrieved are stable. The study also gives further merit to the FSO technique, as it shows that the solutions suit investor risk profiles better than portfolios retrieved from traditional methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Universities are encouraged to widen access to a broad range of applicants, including mature students taking Access qualifications. Admissions tutors can find it difficult to compare and choose between Access and A-level applications, and Access applicants for popular courses may be disadvantaged relative to students with good A-levels. In this evaluative case study a foundation year designed to avoid Access selection problems and widen participation in psychology, biology, optometry and pharmacy is reviewed. Progression and success rates are compared to national averages for Access courses and issues in Foundation Year management considered. The Foundation Year is rejected as unsatisfactory and it is concluded that widening participation for mature students can be achieved through Access courses. Difficulties in achieving this for high-demand courses in leading universities are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A formalism recently introduced by Prugel-Bennett and Shapiro uses the methods of statistical mechanics to model the dynamics of genetic algorithms. To be of more general interest than the test cases they consider. In this paper, the technique is applied to the subset sum problem, which is a combinatorial optimization problem with a strongly non-linear energy (fitness) function and many local minima under single spin flip dynamics. It is a problem which exhibits an interesting dynamics, reminiscent of stabilizing selection in population biology. The dynamics are solved under certain simplifying assumptions and are reduced to a set of difference equations for a small number of relevant quantities. The quantities used are the population's cumulants, which describe its shape, and the mean correlation within the population, which measures the microscopic similarity of population members. Including the mean correlation allows a better description of the population than the cumulants alone would provide and represents a new and important extension of the technique. The formalism includes finite population effects and describes problems of realistic size. The theory is shown to agree closely to simulations of a real genetic algorithm and the mean best energy is accurately predicted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunoinformatics is an emergent branch of informatics science that long ago pullulated from the tree of knowledge that is bioinformatics. It is a discipline which applies informatic techniques to problems of the immune system. To a great extent, immunoinformatics is typified by epitope prediction methods. It has found disappointingly limited use in the design and discovery of new vaccines, which is an area where proper computational support is generally lacking. Most extant vaccines are not based around isolated epitopes but rather correspond to chemically-treated or attenuated whole pathogens or correspond to individual proteins extract from whole pathogens or correspond to complex carbohydrate. In this chapter we attempt to review what progress there has been in an as-yet-underexplored area of immunoinformatics: the computational discovery of whole protein antigens. The effective development of antigen prediction methods would significantly reduce the laboratory resource required to identify pathogenic proteins as candidate subunit vaccines. We begin our review by placing antigen prediction firmly into context, exploring the role of reverse vaccinology in the design and discovery of vaccines. We also highlight several competing yet ultimately complementary methodological approaches: sub-cellular location prediction, identifying antigens using sequence similarity, and the use of sophisticated statistical approaches for predicting the probability of antigen characteristics. We end by exploring how a systems immunomics approach to the prediction of immunogenicity would prove helpful in the prediction of antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artifact selection decisions typically involve the selection of one from a number of possible/candidate options (decision alternatives). In order to support such decisions, it is important to identify and recognize relevant key issues of problem solving and decision making (Albers, 1996; Harris, 1998a, 1998b; Jacobs & Holten, 1995; Loch & Conger, 1996; Rumble, 1991; Sauter, 1999; Simon, 1986). Sauter classifies four problem solving/decision making styles: (1) left-brain style, (2) right-brain style, (3) accommodating, and (4) integrated (Sauter, 1999). The left-brain style employs analytical and quantitative techniques and relies on rational and logical reasoning. In an effort to achieve predictability and minimize uncertainty, problems are explicitly defined, solution methods are determined, orderly information searches are conducted, and analysis is increasingly refined. Left-brain style decision making works best when it is possible to predict/control, measure, and quantify all relevant variables, and when information is complete. In direct contrast, right-brain style decision making is based on intuitive techniques—it places more emphasis on feelings than facts. Accommodating decision makers use their non-dominant style when they realize that it will work best in a given situation. Lastly, integrated style decision makers are able to combine the left- and right-brain styles—they use analytical processes to filter information and intuition to contend with uncertainty and complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulation is an effective method for improving supply chain performance. However, there is limited advice available to assist practitioners in selecting the most appropriate method for a given problem. Much of the advice that does exist relies on custom and practice rather than a rigorous conceptual or empirical analysis. An analysis of the different modelling techniques applied in the supply chain domain was conducted, and the three main approaches to simulation used were identified; these are System Dynamics (SD), Discrete Event Simulation (DES) and Agent Based Modelling (ABM). This research has examined these approaches in two stages. Firstly, a first principles analysis was carried out in order to challenge the received wisdom about their strengths and weaknesses and a series of propositions were developed from this initial analysis. The second stage was to use the case study approach to test these propositions and to provide further empirical evidence to support their comparison. The contributions of this research are both in terms of knowledge and practice. In terms of knowledge, this research is the first holistic cross paradigm comparison of the three main approaches in the supply chain domain. Case studies have involved building ‘back to back’ models of the same supply chain problem using SD and a discrete approach (either DES or ABM). This has led to contributions concerning the limitations of applying SD to operational problem types. SD has also been found to have risks when applied to strategic and policy problems. Discrete methods have been found to have potential for exploring strategic problem types. It has been found that discrete simulation methods can model material and information feedback successfully. Further insights have been gained into the relationship between modelling purpose and modelling approach. In terms of practice, the findings have been summarised in the form of a framework linking modelling purpose, problem characteristics and simulation approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artifact selection decisions typically involve the selection of one from a number of possible/candidate options (decision alternatives). In order to support such decisions, it is important to identify and recognize relevant key issues of problem solving and decision making (Albers, 1996; Harris, 1998a, 1998b; Jacobs & Holten, 1995; Loch & Conger, 1996; Rumble, 1991; Sauter, 1999; Simon, 1986). Sauter classifies four problem solving/decision making styles: (1) left-brain style, (2) right-brain style, (3) accommodating, and (4) integrated (Sauter, 1999). The left-brain style employs analytical and quantitative techniques and relies on rational and logical reasoning. In an effort to achieve predictability and minimize uncertainty, problems are explicitly defined, solution methods are determined, orderly information searches are conducted, and analysis is increasingly refined. Left-brain style decision making works best when it is possible to predict/control, measure, and quantify all relevant variables, and when information is complete. In direct contrast, right-brain style decision making is based on intuitive techniques—it places more emphasis on feelings than facts. Accommodating decision makers use their non-dominant style when they realize that it will work best in a given situation. Lastly, integrated style decision makers are able to combine the left- and right-brain styles—they use analytical processes to filter information and intuition to contend with uncertainty and complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrated supplier selection and order allocation is an important decision for both designing and operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant operators and customers in different tiers. As firms continue to seek competitive advantage through supply chain design and operations they aim to create optimized supply chains. This calls for on one hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties of demand and supply. Although there are studies on supplier selection using advanced mathematical models to cover a stochastic approach, multiple criteria decision making techniques and multiple stakeholder requirements separately, according to authors' knowledge there is no work that integrates these three aspects in a common framework. This paper proposes an integrated method for dealing with such problems using a combined Analytic Hierarchy Process-Quality Function Deployment (AHP-QFD) and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates orders optimally between them. The effectiveness of the proposed decision support system has been demonstrated through application and validation in the bioenergy industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Throughput plays a vital role for data transfer in Vehicular Networks which is useful for both safety and non-safety applications. An algorithm that adapts to mobile environment by using Context information has been proposed in this paper. Since one of the problems of existing rate adaptation algorithm is underutilization of link capacity in Vehicular environments, we have demonstrated that in wireless and mobile environments, vehicles can adapt to high mobility link condition and still perform better due to regular vehicles that will be out of communication range due to range checking and then de-congest the network thereby making the system perform better since fewer vehicles will contend for network resources. In this paper, we have design, implement and analyze ACARS, a more robust algorithm with significant increase in throughput performance and energy efficiency in the mist of high mobility of vehicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wide range of metrology processes are involved in the manufacture of large products. In addition to the traditional tool-setting and product-verification operations, increasingly flexible metrology-enabled automation is also being used. Faced with many possible measurement problems and a very large number of metrology instruments employing diverse technologies, the selection of the appropriate instrument for a given task can be highly complex. Also, as metrology has become a key manufacturing process, it should be considered in the early stages of design, and there is currently very little research to support this. This paper provides an overview of the important selection criteria for typical measurement processes and presents some novel selection strategies. Metrics that can be used to assess measurability are also discussed. A prototype instrument selection and measurability analysis application is also presented, with discussion of how this can be used as the basis for development of a more sophisticated measurement planning tool. © 2010 Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To investigate the qualitative aspects in patient selection and the quantitative impact of disease burden in real world treatment of vitreomacular traction (VMT) and implementation of the National Institute for Health and Care Excellence (NICE) guidance (TA297). Methods: A monocentric, retrospective review of consecutive patients undergoing optical coherence tomography (OCT) imaging over a 3 month period. Patients with VMT in at least one eye were identified for further data collection on laterality, visual acuity, symptoms, presence of epiretinal membrane, macular hole and treatment selection. Results: A total of 3472 patients underwent OCT imaging with a total of 6878 eyes scanned. Out of 87 patients, 74 patients had unilateral VMT (38 right, 36 left) and 13 patients had bilateral VMT. Eighteen patients with unilateral VMT satisfied NICE criteria of severe sight problems in the affected eye. Eight were managed for a coexisting pathology, one refused treatment, one patient did not attend, two closed spontaneously, and one received ocriplasmin prior to the study start date. Only two patients with unilateral VMT received ocriplasmin and three underwent vitrectomy. Those failing to meet NICE criteria for unilateral VMT were predominantly asymptomatic (n=49) or had coexisting ERM (n=5) or both (n=2). Conclusion: Ocriplasmin provides an alternative treatment for patients with symptomatic VMT. Our data shows that the majority of patients with VMT do not meet NICE TA297 primarily due to lack of symptoms. Those meeting NICE criteria, but not treated, tended to have coexisting macular pathology. Variation in patient selection due to subjective factors not outlined in NICE guidance suggests that real world outcomes of ocriplasmin therapy should be interpreted with caution.