10 resultados para Sculpture, Classical.
em Aston University Research Archive
Resumo:
The life and work of Werner Sombart poses an intellectual puzzle in the genealogy of modern social theorists. During his lifetime, Sombart was probably the most influential and prominent social scientist in Germany as well as in many other countries. Today he is among the least known social scientists. Why did he lose his status as one of the most brilliant and influential scholars and intellectuals of the 20th century? Why is his work almost forgotten today? While Weber's thesis about the influence of Protestantism on the development of capitalism is widely known, even beyond sociological circles, few sociologists today know that Sombart had an alternative explanation. An obvious explanation for Sombart's fall from grace is his embrace of Nazism. As Heidegger provides a counter-example, Sombart's fate requires a more complex explanation. In addition, we explore the different reception of his work in economic and sociological circles as compared to cultural theory and history. © 2001, SAGE Publications. All rights reserved.
Resumo:
Purpose - This paper provides a deeper examination of the fundamentals of commonly-used techniques - such as coefficient alpha and factor analysis - in order to more strongly link the techniques used by marketing and social researchers to their underlying psychometric and statistical rationale. Design/methodology approach - A wide-ranging review and synthesis of psychometric and other measurement literature both within and outside the marketing field is used to illuminate and reconsider a number of misconceptions which seem to have evolved in marketing research. Findings - The research finds that marketing scholars have generally concentrated on reporting what are essentially arbitrary figures such as coefficient alpha, without fully understanding what these figures imply. It is argued that, if the link between theory and technique is not clearly understood, use of psychometric measure development tools actually runs the risk of detracting from the validity of the measures rather than enhancing it. Research limitations/implications - The focus on one stage of a particular form of measure development could be seen as rather specialised. The paper also runs the risk of increasing the amount of dogma surrounding measurement, which runs contrary to the spirit of this paper. Practical implications - This paper shows that researchers may need to spend more time interpreting measurement results. Rather than simply referring to precedence, one needs to understand the link between measurement theory and actual technique. Originality/value - This paper presents psychometric measurement and item analysis theory in easily understandable format, and offers an important set of conceptual tools for researchers in many fields. © Emerald Group Publishing Limited.
Resumo:
The field evaporation literature has been carefully analysed and is shown to contain various confusions. After redefining consistent terminology, this thesis investigates the mechanisms of field evaporation, in particular, the relevance of the theoretical mechanisms by analysing the available experimental data. A new formalism `extended image-hump formalism' is developed and is used to devise several tests of whether the image-hump mechanism is operating. The general conclusion is that in most cases the Mueller mechanism is not operating and escape takes place via Gomer-type mechanisms.
Resumo:
We investigate the sensitivity of a Markov model with states and transition probabilities obtained from clustering a molecular dynamics trajectory. We have examined a 500 ns molecular dynamics trajectory of the peptide valine-proline-alanine-leucine in explicit water. The sensitivity is quantified by varying the boundaries of the clusters and investigating the resulting variation in transition probabilities and the average transition time between states. In this way, we represent the effect of clustering using different clustering algorithms. It is found that in terms of the investigated quantities, the peptide dynamics described by the Markov model is sensitive to the clustering; in particular, the average transition times are found to vary up to 46%. Moreover, inclusion of nonphysical sparsely populated clusters can lead to serious errors of up to 814%. In the investigation, the time step used in the transition matrix is determined by the minimum time scale on which the system behaves approximately Markovian. This time step is found to be about 100 ps. It is concluded that the description of peptide dynamics with transition matrices should be performed with care, and that using standard clustering algorithms to obtain states and transition probabilities may not always produce reliable results.
Resumo:
This thesis comprises two main objectives. The first objective involved the stereochemical studies of chiral 4,6-diamino-1-aryl-1,2-dihydro-s-triazines and an investigation on how the different conformations of these stereoisomers may affect their binding affinity to the enzyme dihydrofolate reductase (DHFR). The ortho-substituted 1-aryl-1,2-dihydro-s-triazines were synthesised by the three component method. An ortho-substitution at the C6' position was observed when meta-azidocycloguanil was decomposed in acid. The ortho-substituent restricts free rotation and this gives rise to atropisomerism. Ortho-substituted 4,6-diamino-1-aryl-2-ethyl-1,2-dihydro-2-methyl-s-triazine contains two elements of chirality and therefore exists as four stereoisomers: (S,aR), (R,aS), (R,aR) and (S,aS). The energy barriers to rotation of these compounds were calculated by a semi-empirical molecular orbital program called MOPAC and they were found to be in excess of 23 kcal/mol. The diastereoisomers were resolved and enriched by C18 reversed phase h.p.l.c. Nuclear overhauser effect experiments revealed that (S,aR) and (R,aS) were the more stable pair of stereoisomers and therefore existed as the major component. The minor diastereoisomers showed greater binding affinity for the rat liver DHFR in in vitro assay. The second objective entailed the investigation into the possibility of retaining DHFR inhibitory activity by replacing the classical diamino heterocyclic moiety with an amidinyl group. 4-Benzylamino-3-nitro-N,N-dimethyl-phenylamidine was synthesised in two steps. One of the two phenylamidines indicated weak inhibition against the rat liver DHFR. This weak activity may be due to the failure of the inhibitor molecule to form strong hydrogen bonds with residue Glu-30 at the active site of the enzyme.
Resumo:
Since Shannon derived the seminal formula for the capacity of the additive linear white Gaussian noise channel, it has commonly been interpreted as the ultimate limit of error-free information transmission rate. However, the capacity above the corresponding linear channel limit can be achieved when noise is suppressed using nonlinear elements; that is, the regenerative function not available in linear systems. Regeneration is a fundamental concept that extends from biology to optical communications. All-optical regeneration of coherent signal has attracted particular attention. Surprisingly, the quantitative impact of regeneration on the Shannon capacity has remained unstudied. Here we propose a new method of designing regenerative transmission systems with capacity that is higher than the corresponding linear channel, and illustrate it by proposing application of the Fourier transform for efficient regeneration of multilevel multidimensional signals. The regenerative Shannon limit -the upper bound of regeneration efficiency -is derived. © 2014 Macmillan Publishers Limited. All rights reserved.
Resumo:
Leu-Enkephalin in explicit water is simulated using classical molecular dynamics. A ß-turn transition is investigated by calculating the topological complexity (in the "computational mechanics" framework [J. P. Crutchfield and K. Young, Phys. Rev. Lett., 63, 105 (1989)]) of the dynamics of both the peptide and the neighbouring water molecules. The complexity of the atomic trajectories of the (relatively short) simulations used in this study reflect the degree of phase space mixing in the system. It is demonstrated that the dynamic complexity of the hydrogen atoms of the peptide and almost all of the hydrogens of the neighbouring waters exhibit a minimum precisely at the moment of the ß-turn transition. This indicates the appearance of simplified periodic patterns in the atomic motion, which could correspond to high-dimensional tori in the phase space. It is hypothesized that this behaviour is the manifestation of the effect described in the approach to molecular transitions by Komatsuzaki and Berry [T. Komatsuzaki and R.S. Berry, Adv. Chem. Phys., 123, 79 (2002)], where a "quasi-regular" dynamics at the transition is suggested. Therefore, for the first time, the less chaotic character of the folding transition in a realistic molecular system is demonstrated. © Springer-Verlag Berlin Heidelberg 2006.
Resumo:
Recent investigations into cross-country convergence follow Mankiw, Romer, and Weil (1992) in using a log-linear approximation to the Swan-Solow growth model to specify regressions. These studies tend to assume a common and exogenous technology. In contrast, the technology catch-up literature endogenises the growth of technology. The use of capital stock data renders the approximations and over-identification of the Mankiw model unnecessary and enables us, using dynamic panel estimation, to estimate the separate contributions of diminishing returns and technology transfer to the rate of conditional convergence. We find that both effects are important.
Resumo:
Methods for the calculation of complexity have been investigated as a possible alternative for the analysis of the dynamics of molecular systems. “Computational mechanics” is the approach chosen to describe emergent behavior in molecular systems that evolve in time. A novel algorithm has been developed for symbolization of a continuous physical trajectory of a dynamic system. A method for calculating statistical complexity has been implemented and tested on representative systems. It is shown that the computational mechanics approach is suitable for analyzing the dynamic complexity of molecular systems and offers new insight into the process.
Resumo:
The computational mechanics approach has been applied to the orientational behavior of water molecules in a molecular dynamics simulated water–Na + system. The distinctively different statistical complexity of water molecules in the bulk and in the first solvation shell of the ion is demonstrated. It is shown that the molecules undergo more complex orientational motion when surrounded by other water molecules compared to those constrained by the electric field of the ion. However the spatial coordinates of the oxygen atom shows the opposite complexity behavior in that complexity is higher for the solvation shell molecules. New information about the dynamics of water molecules in the solvation shell is provided that is additional to that given by traditional methods of analysis.