2 resultados para Scorpaena plumieri venom

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was firstly to identify active molecules in herbs, that are traditionally used for the treatment of snake bite, such as Curcuma antinaia, Curcuma contravenenum, Andrographis paniculata, and Tanacetum parthenium; secondly to test similar structurally related molecules and finally to prepare and evaluate an efficient formulation against Ophiophagus hannah venom intoxification. Three labdane based compounds, including labdane dialdehyde, labdane lactone, and labdane trialdehyde and two lactones including 14-deoxy-11,12-didehydroandrographolide and parthenolide were isolated by column chromatography and characterised. Using the isolated rat phrenic nerve-hemidiaphragm preparation, the antagonistic effect of crude extracts, isolated compounds and prepared formulations were measured in vitro on the inhibition of the neuromuscular transmission. Inhibition on muscle contraction, produced by the 5 μg/mL venom, was reversed by test agents in organ bath preparations. A labdane trialdehyde, isolated from C. contravenenum, was identified as the best antagonising agent in the low micromolar range. Tests on formulations of the most potent C. contravenenum extract showed, that the suppository with witepsol H15 was an effective medicine against O. hannah venom. This study elucidated the active compounds, accounting for the antivenin activity of traditionally used herbs and suggested the most suitable formulation, which may help to develop potent medicines for the treatment of snake bite in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives Curcuma zedoaroides A. Chaveerach & T. Tanee, locally known as Wan-Paya-Ngoo-Tua-Mia, is commonly used in the North-Eastern part of Thailand as a 'snakebite antidote'. The aim of this study was to isolate the active compound from the rhizome of C. zedoaroides, to determine its structure and to assess its antagonistic activity in vitro and in vivo against King cobra venom. Methods The active compound was obtained from C. zedoaroides by extraction with acetone followed by purification using column chromatography; its X-ray structure was determined. Its inhibition of venom lethality was studied in vitro in rat phrenic nerve-hemidiaphragms and in vivo in mice. Key findings The acetone extract of the Curcuma rhizomes contained a C20 dialdehyde, [2-(5,5,8a-trimethyl-2-methylene-decahydro-naphthalen-1-yl)-ethylidene] -succinaldehyde, as the major component. The isolated curcuma dialdehyde was found active in vitro and in vivo for antivenin activity against the King cobra venom. Using isolated rat phrenic nerve-hemidiaphragm preparations, a significant antagonistic effect on the inhibition of neuromuscular transmission was observed in vitro. Inhibition on muscle contraction, produced by the 4 μg/ml venom, was reversed by 2-16 μg/ml of Curcuma dialdehyde in organ bath preparations over a period of 2 h. Mice intraperitoneally injected with 0.75 mg/kg venom and dialdehyde at 100 mg/kg had a significantly increased survival time. Injection of Curcuma dialdehyde (100 mg/kg) 30 min before the subcutaneous injection of the venom resulted in a 100% survival time after 2 h compared with 0% for the control group. Conclusions The in vitro and in vivo evaluation confirmed the medicinal use of traditional snake plants against snakebites. The bioactivity is linked to an isolated molecule and not a result of synergistic effects of a mixture. The active compound was isolated and the structure fully elucidated, including its stereochemistry. This dialdehyde is a versatile chemical building block and can be easily obtained from this plant source. © 2010 Royal Pharmaceutical Society of Great Britain.