20 resultados para Schon (1983), calling this ‘knowing-in-action’
em Aston University Research Archive
Resumo:
This book introduces key ideas and current critical debates about how English functions within its social and cultural contexts, and provides practical examples and guidance on how to approach further work in these areas. It introduces core topics of language study; language variation, pragmatics, stylistics, critical discourse analysis, language and gender and language and education. Each chapter includes case studies providing worked analysis of sample texts, suggestions for further project work and an annotated further reading section.
Resumo:
This paper focuses on the questions which heterosexual trainees ask about lesbian, gay and bisexual (LGB) experience within diversity training about LGB issues. Drawing on a data corpus of 162 questions asked by trainees in 13 tape-recorded training sessions, questions were coded into six categories: (1) general understanding questions; (2) questions about the trainer's life, experience and practices; (3) professional practice questions; (4) questions about lesbian and gay related legislation, policies and procedures; (5) questions about specific people and projects and (6) questions about the meanings, derivations and correct use of terms and symbols. Real questions are compared with the decontexualized questions (and answers to them) that are provided in training manuals and it is demonstrated that these questions differ markedly from how questions actually get asked and how they actually get answered. Recommendations are provided for improving training and the argument made for turning towards analyses of the real world in action, especially when considering intergroup relations. Copyright © 2008 John Wiley & Sons, Ltd.
Resumo:
Book review: Frank Hendriks, Oxford University Press, 2010, 256 pp., £47 ($85.00) (hb), ISBN-13: 9780199572786
Resumo:
The amplification of demand variation up a supply chain widely termed ‘the Bullwhip Effect’ is disruptive, costly and something that supply chain management generally seeks to minimise. Originally attributed to poor system design; deficiencies in policies, organisation structure and delays in material and information flow all lead to sub-optimal reorder point calculation. It has since been attributed to exogenous random factors such as: uncertainties in demand, supply and distribution lead time but these causes are not exclusive as academic and operational studies since have shown that orders and/or inventories can exhibit significant variability even if customer demand and lead time are deterministic. This increase in the range of possible causes of dynamic behaviour indicates that our understanding of the phenomenon is far from complete. One possible, yet previously unexplored, factor that may influence dynamic behaviour in supply chains is the application and operation of supply chain performance measures. Organisations monitoring and responding to their adopted key performance metrics will make operational changes and this action may influence the level of dynamics within the supply chain, possibly degrading the performance of the very system they were intended to measure. In order to explore this a plausible abstraction of the operational responses to the Supply Chain Council’s SCOR® (Supply Chain Operations Reference) model was incorporated into a classic Beer Game distribution representation, using the dynamic discrete event simulation software Simul8. During the simulation the five SCOR Supply Chain Performance Attributes: Reliability, Responsiveness, Flexibility, Cost and Utilisation were continuously monitored and compared to established targets. Operational adjustments to the; reorder point, transportation modes and production capacity (where appropriate) for three independent supply chain roles were made and the degree of dynamic behaviour in the Supply Chain measured, using the ratio of the standard deviation of upstream demand relative to the standard deviation of the downstream demand. Factors employed to build the detailed model include: variable retail demand, order transmission, transportation delays, production delays, capacity constraints demand multipliers and demand averaging periods. Five dimensions of supply chain performance were monitored independently in three autonomous supply chain roles and operational settings adjusted accordingly. Uniqueness of this research stems from the application of the five SCOR performance attributes with modelled operational responses in a dynamic discrete event simulation model. This project makes its primary contribution to knowledge by measuring the impact, on supply chain dynamics, of applying a representative performance measurement system.
Resumo:
Most environmental reporting studies have focused on developed countries. Only a handful number of studies are available on the developing countries, concentrating on the newly industrialized countries and African countries. No studies are available from South Asia except the widely quoted one of Singh and Ahuja (1983). Against this background, it is argued that an empirical study on environmental reporting practices in Bangladesh would make a significant contribution to the environmental reporting literature from the context of developing countries in general, and South Asian countries in particular. The study covers 30 recent annual reports of Bangladeshi companies relating to the year 1996. It shows that very limited environmental disclosure has been made. Although we have noted that 90% of companies made some environmental disclosures, the percentage of companies disclosing environmental information comes down to only 20 if we exclude disclosure related to expenditure on energy usage. In general, the quantity and the quality of disclosures seem to be inadequate and poor as compared to the environmental disclosures in the developed countries. The study concludes with an urge for further research in this regard.
Resumo:
The leucine metabolite β-hydroxy-β-methylbutyrate (HMB) prevents muscle protein degradation in cancer-induced weight loss through attenuation of the ubiquitin-proteasome proteolytic pathway. To investigate the mechanism of this effect, the action of HMB on protein breakdown and intracellular signaling leading to increased proteasome expression by the tumor factor proteolysis-inducing factor (PIF) has been studied in vitro using murine myotubes as a surrogate model of skeletal muscle. A comparison has been made of the effects of HMB and those of eicosapentaenoic acid (EPA), a known inhibitor of PIF signaling. At a concentration of 50 μmol/L, EPA and HMB completely attenuated PIF-induced protein degradation and induction of the ubiquitin-proteasome proteolytic pathway, as determined by the "chymotrypsin-like" enzyme activity, as well as protein expression of 20S proteasome α- and β-subunits and subunit p42 of the 19S regulator. The primary event in PIF-induced protein degradation is thought to be release of arachidonic acid from membrane phospholipids, and this process was attenuated by EPA, but not HMB, suggesting that HMB might act at another step in the PIF signaling pathway. EPA and HMB at a concentration of 50 μmol/L attenuated PIF-induced activation of protein kinase C and the subsequent degradation of inhibitor κBα and nuclear accumulation of nuclear factor κB. EPA and HMB also attenuated phosphorylation of p42/44 mitogen-activated protein kinase by PIF, thought to be important in PIF-induced proteasome expression. These results suggest that HMB attenuates PIF-induced activation and increased gene expression of the ubiquitin-proteasome proteolytic pathway, reducing protein degradation.
Resumo:
Two key issues defined the focus of this research in manufacturing plasmid DNA for use In human gene therapy. First, the processing of E.coli bacterial cells to effect the separation of therapeutic plasmid DNA from cellular debris and adventitious material. Second, the affinity purification of the plasmid DNA in a Simple one-stage process. The need arises when considering the concerns that have been recently voiced by the FDA concerning the scalability and reproducibility of the current manufacturing processes in meeting the quality criteria of purity, potency, efficacy, and safety for a recombinant drug substance for use in humans. To develop a preliminary purification procedure, an EFD cross-flow micro-filtration module was assessed for its ability to effect the 20-fold concentration, 6-time diafiltration, and final clarification of the plasmid DNA from the subsequent cell lysate that is derived from a 1 liter E.coli bacterial cell culture. Historically, the employment of cross-flow filtration modules within procedures for harvesting cells from bacterial cultures have failed to reach the required standards dictated by existing continuous centrifuge technologies, frequently resulting in the rapid blinding of the membrane with bacterial cells that substantially reduces the permeate flux. By challenging the EFD module, containing six helical wound tubular membranes promoting centrifugal instabilities known as Dean vortices, with distilled water between the Dean number's of 187Dn and 818Dn,and the transmembrane pressures (TMP) of 0 to 5 psi. The data demonstrated that the fluid dynamics significantly influenced the permeation rate, displaying a maximum at 227Dn (312 Imh) and minimum at 818Dn (130 Imh) for a transmembrane pressure of 1 psi. Numerical studies indicated that the initial increase and subsequent decrease resulted from a competition between the centrifugal and viscous forces that create the Dean vortices. At Dean numbers between 187Dn and 227Dn , the forces combine constructively to increase the apparent strength and influence of the Dean vortices. However, as the Dean number in increases above 227 On the centrifugal force dominates the viscous forces, compressing the Dean vortices into the membrane walls and reducing their influence on the radial transmembrane pressure i.e. the permeate flux reduced. When investigating the action of the Dean vortices in controlling tile fouling rate of E.coli bacterial cells, it was demonstrated that the optimum cross-flow rate at which to effect the concentration of a bacterial cell culture was 579Dn and 3 psi TMP, processing in excess of 400 Imh for 20 minutes (i.e., concentrating a 1L culture to 50 ml in 10 minutes at an average of 450 Imh). The data demonstrated that there was a conflict between the Dean number at which the shear rate could control the cell fouling, and the Dean number at which tile optimum flux enhancement was found. Hence, the internal geometry of the EFD module was shown to sub-optimal for this application. At 579Dn and 3 psi TMP, the 6-fold diafiltration was shown to occupy 3.6 minutes of process time, processing at an average flux of 400 Imh. Again, at 579Dn and 3 psi TMP the clarification of the plasmid from tile resulting freeze-thaw cell lysate was achieved at 120 Iml1, passing 83% (2,5 mg) of the plasmid DNA (6,3 ng μ-1 10.8 mg of genomic DNA (∼23,00 Obp, 36 ng μ-1 ), and 7.2 mg of cellular proteins (5-100 kDa, 21.4 ngμ-1 ) into the post-EFD process stream. Hence the EFD module was shown to be effective, achieving the desired objectives in approximately 25 minutes. On the basis of its ability to intercalate into low molecular weight dsDNA present in dilute cell lysates, and be electrophoresed through agarose, the fluorophore PicoGreen was selected for the development of a suitable dsDNA assay. It was assesseel for its accuracy, and reliability, In determining the concentration and identity of DNA present in samples that were eleclrophoresed through agarose gels. The signal emitted by intercalated PicoGreen was shown to be constant and linear, and that the mobility of the PicaGreen-DNA complex was not affected by the intercalation. Concerning the secondary purification procedure, various anion-exchange membranes were assessed for their ability to capture plasmid DNA from the post-EFD process stream. For a commercially available Sartorius Sartobind Q15 membrane, the reduction in the equilibriumbinding capacity for ctDNA in buffer of increasing ionic demonstrated that DNA was being.adsorbed by electrostatic interactions only. However, the problems associated with fluid distribution across the membrane demonstrated that the membrane housing was the predominant cause of the .erratic breakthrough curves. Consequently, this would need to be rectified before such a membrane could be integrated into the current system, or indeed be scaled beyond laboratory scale. However, when challenged with the process material, the data showed that considerable quantities of protein (1150 μg) were adsorbed preferentially to the plasmid DNA (44 μg). This was also shown for derived Pall Gelman UltraBind US450 membranes that had been functionalised by varying molecular weight poly-L~lysine and polyethyleneimine ligands. Hence the anion-exchange membranes were shown to be ineffective in capturing plasmid DNA from the process stream. Finally, work was performed to integrate a sequence-specific DNA·binding protein into a single-stage DNA chromatography, isolating plasmid DNA from E.coli cells whilst minimising the contamination from genomic DNA and cellular protein. Preliminary work demonstrated that the fusion protein was capable of isolating pUC19 DNA into which the recognition sequence for the fusion-protein had been inserted (pTS DNA) when in the presence of the conditioned process material. Althougth the pTS recognition sequence differs from native pUC19 sequences by only 2 bp, the fusion protein was shown to act as a highly selective affinity ligand for pTS DNA alone. Subsequently, the scale of the process was scaled 25-fold and positioned directly following the EFD system. In conclusion, the integration of the EFD micro-filtration system and zinc-finger affinity purification technique resulted in the capture of approximately 1 mg of plasmid DNA was purified from 1L of E.coli culture in a simple two stage process, resulting in the complete removal of genomic DNA and 96.7% of cellular protein in less than 1 hour of process time.
Resumo:
This thesis examines the theoretical and empirical relationship between trade unions and productivity in the Korean auto and cement manufacturing industries, during the 1980s. It challenges the tenets of the existing debate by stressing the contingent nature of this relationship. In particular this thesis pinpoints inadequacies of econometric analysis as the only method of judging this association between union presence and productivity, because this ignores national and historical industrial relations contexts. Moreover, the polarity between positive and negative views of trade union influences on productivity is seen as needlessly limited, failing as it does to consider the full context of labour-management dynamics within the employment relationship. Empirically, this thesis focuses on the unionism and productivity during two contrasting political periods: the first a time of constraint on union action and the second a period of relative freedom. It examines these periods using a full range of quantitative and qualitative analysis. Of particular significant is the inclusion of attitude surveys of the relationship between the presence of unions and productivity conducted amongst workers, managers and trade union officials. The broad conclusion of the thesis is a rejection of the validity of continuing to examine the relationship between trade unions and productivity without locating this within national and historical industrial relations contexts.
Resumo:
Cancer cachexia comprises unintentional and debilitating weight loss associated with certain tumour types. Fat loss in cachexia is mediated by a 43kDa Lipid Mobilising Factor (LMF) sharing homology with endogenous Zinc-α2-Glycoprotein (ZAG). LMF and ZAG induced significant lipolysis in isolated epidydimal adipose tissue. This is attenuated by co-incubation with 10μM of antagonist SR59230A and partially attenuated by 25μM PD098059 (indicating β3-AR and MAPK involvement respectively). LMF/ZAG induced in vitro lipid depletion in differentiated 3T3-L1 adipocytes that seen to comprise a significant increase in lipolysis (p<0.01), with only a modest decrease in lipid synthesis (p=0.09). ZAG significantly increased in vitro protein synthesis (p<0.01) in C2C12 myotubes (without an effect on protein degradation). This increase was activated at transcription and attenuated by co-incubation with 10μM SR59230A. Proteolytic digestion of ZAG and LMF followed by sephadex G50 chromatography yielded active fragments of 6-15kDa, indication the entire molecule was not required for bioactivity. Cachexigenic MAC16 cells demonstrated significant in vitro ZAG expression over non-cachexigenic MAC13 cells (p<0.001). WAT and BAT excised from MAC16 mice of varying weight loss demonstrated increased ZAG expression compared to controls. Dosing of NMRI mice with s/c ZAG failed to reproduce this up-regulation, thus another cachectic factor is responsible. 0.58nM LMF conferred significant protection against hydrogen peroxide, paraquat and bleomycin-induced oxidative stress in the non-cachexigenic MAC13 cell line. This protection was attenuated by 10μM SR59230A indicating a β3-AR mediated effect. In addition, 0.58nM LMF significantly up regulated UCP2 expression (p<0.001), (a mitochondrial protein implicated in the detoxification of ROS) implying this to be the mechanism by which survival was achieved. In vitro, LMF caused significant up-regulation of UCP1 in BAT and UCP2 and 3 in C2C12 myotubes. This increase in uncoupling protein expression further potentiates the negative energy balance and wasting observed in cachexia.
Resumo:
Cystic fibrosis (CF) is the most common autosomal recessive disorder affecting Caucasian populations. The pathophysiology of this disorder predisposes the lungs of affected patients to chronic infection, typically by Pseudomonas aeruginosa, which is the main cause of morbidity and mortality. Recently, attention has focused on aerosolised polymyxins, which are given prophylactically in an effort to limit infection and subsequent lung damage. This class of antimicrobial compounds is highly active against P. aeruginosa and possess the advantage that resistance rarely develops. However, the rapid lung clearance of antibiotics is a well documented phenomenon and it was postulated that polymyxin treatment could be further improved by liposomal encapsulation. As part of the development of liposomal polymyxin B, analytical methodology (radiolabelling, HPLC and protein assay) applicable to liposomal formulations was established. Liposomes were prepared by the dehydration-rehydration method and encapsulation efficiencies were determined for a number of phospholipid compositions. Vesicles were characterised with respect to size, zeta potential, morphology and release characteristics. The surface hydrophobicity of vesicles was quantified by hydrophobic interaction chromatography and it was found that this method produced comparable results to techniques conventionally used to assess this property. In vivo testing of liposomal polymyxins demonstrated that encapsulation successfully prevented the rapid pulmonary clearance of PXB. Antimicrobial activity of liposomal formulations was quantified and found to be dependent on both the vesicle surface characteristics and their release profile. Investigation of the interaction of PXB with lipopolysaccharide was undertaken and results demonstrated that PXB caused significant structural distortion of the lipid A region. This may be sufficient to abrogate the potentiating action of LPS in the inflammatory cascade.
Resumo:
The imidazotetrazinones are clinically active antitumour agents, temozolomide currently proving successful in the treatment of melanomas and gliomas. The exact nature of the biological processes underlying response are as yet unclear.This thesis attempts to identify the cellular targets important to the cytotoxicity of imidazotetrazinones, to elucidate the pathways by which this damage leads to cell death, and to identify mechanisms by which tumour cells may circumvent this action. The levels of the DNA repair enzymes O6-alkylguanine-DNA-alkyltransferase (O6-AGAT) and 3-methyladenine-DNA-glycosylase (3MAG) have been examined in a range of murine and human cell lines with differential sensitivity to temozolomide. All the cell lines were proficient in 3MAG despite there being 40-fold difference in sensitivity to temozolomide. This suggests that while 3-methyladenine is a major product of temozolomide alkylation of DNA it is unlikely to be a cytotoxic lesion. In contrast, there was a 20-fold variation in O6-AGAT levels and the concentration of this repair enzyme correlated with variations in cytotoxicity. Furthermore, depletion of this enzyme in a resistant, O6-AGAT proficient cell line (Raji), by pre-treatment with the free base O6-methylguanine resulted in 54% sensitisation to the effects of temozolomide. These observations have been extended to 3 glioma cell lines; results that support the view that the cytotoxicity of temozolomide is related to alkylation at the O6-position of guanine and that resistance to this drug is determined by efficient repair of this lesion. It is clear, however, the other factors may influence tumour response since temozolomide showed little differential activity towards 3 established solid murine tumours in vivo, despite different tumour O6-AGAT levels. Unlike mitozolomide, temozolomide is incapable of cross-linking DNA and a mechanism by which O6-methylguanine may exert lethality is unclear. The cytotoxicity of the methyl group may be due to its disruption of DNA-protein interactions, or alternatively cell death may not be a direct result of the alkyl group itself, but manifested by DNA single-strand breaks. Enhanced alkaline elution rates were found for the DNA of Raji cells treated with temozolomide following alkyltransferase depletion, suggesting a relationship between O6-methylguanine and the induction single-strand breaks. Such breaks can activate poly(ADP-ribose) synthetase (ADPRT) an enzyme capable of rapid and lethal depletion of cellular NAD levels. However, at concentrations of temozolomlde relevant in vivo little change in adenine nucleotides was detected in cell lines, although this enzyme would appear important in modulating DNA repair since inhibition of ADPRT potentiated temozolomide cytotoxicity in Raji cells but not O6-AGAT deficient GM892A cells. Cell lines have been reported that are O6-AGAT deficient yet resistant to methylating agents. Thus, resistance to temozolomide may arise not only by removal of the methyl group from the O6-position of guanine, but also from another mechanism involving caffeine-sensitive post-replication repair or mismatch repair activity. A modification of the standard Maxam Gilbert sequencing technique was used to determine the sequence specificity of guanine-N7 alkylation. Temozolomide preferentially alkylated runs of guanines with the intensity of reaction increasing with the number of adjacent guanines in the DNA sequence. Comparable results were obtained with a polymerase-stop assay, although neither technique elucidates the sequence specificity of O6-guanine alkylation. The importance of such specificity to cytotoxicity is uncertain, although guanine-rich sequences are common to the promoter regions of oncogenes. Expression of a plasmid reporter gene under the control of the Ha-ras proto~oncogene promoter was inhibited by alkylation with temozolomide when transfected into cancer cell lines, However, this inhibition did not appear to be related to O6~guanine alkylation and therefore would seem unimportant to the chemotherapeutic activity of temozolomide.
Resumo:
Cancer cachexia is characterised by selective depletion of skeletal muscle protein reserves. The ubiquitin-proteasome proteolytic pathway has been shown to be responsible for muscle wasting in a range of cachectic conditions including cancer cachexia. To establish the importance of this pathway in muscle wasting during cancer (and sepsis), a quantitative competitive RT-PCR (QcRT-PCR) method was developed to measure the mRNA levels of the proteasome sub units C2a and C5ß and the ubiquitin-conjugating enzyme E214k. Western blotting was also used to measure the 20S proteasome and E214k protein expression. In vivo studies in mice bearing a cachexia inducing murine colon adenocarcinoma (MAC16) demonstrated the effect of progressive weight loss on the mRNA and protein expression for 20S proteasome subunits, as well as the ubiquitin-conjugating enzyme, E214k, in gastrocnemius and pectoral muscles. QcRT-PCR measurements showed a good correlation between expression of the proteasome subunits (C2 and CS) and the E214k enzyme mRNA and weight loss in gastrocnemius muscle, where expression increased with increasing weight loss followed by a decrease in expression at higher weight losses (25-27%). Similar results were obtained in pectoral muscles, but with the expression being several fold lower in comparison to that in gastrocnemius muscle, reflecting the different degrees of protein degradation in the two muscles during the process of cancer cachexia. Western blot analysis of 20S and E214k protein expression followed a similar pattern with respect to weight loss as that found with mRNA. In addition, mRNA and protein expression of the 20S proteasome subunits and E214k enzyme was measured in biopsies from cachectic cancer patients, which also showed a good correlation between weight loss and proteasome expression, demonstrating a progressive increase in expression of the proteasome subunits and E214k mRNA and protein in cachectic patients with progressively increasing weight loss.The effect of the cachexia-inducing tumour product PIF (proteolysis inducing factor) and 15-hydroxyeicosatetraenoic acid (15-HETE), the arachidoinic acid metabolite (thought to be the intracellular transducer of PIF action) has also been determined. Using a surrogate model system for skeletal muscle, C2C12 myotubes in vitro, it was shown that both PIF and 15-HETE increased proteasome subunit expression (C2a and C5ß) as well as the E214k enzyme. This increase gene expression was attenuated by preincubation with EPA or the 15-lipoxygenase inhibitor CV-6504; immunoblotting also confirmed these findings. Similarly, in sepsis-induced cachexia in NMRI mice there was increased mRNA and protein expression of the 20S proteasome subunits and the E214k enzyme, which was inhibited by EPA treatment. These results suggest that 15-HETE is the intracellular mediator for PIF induced protein degradation in skeletal muscle, and that elevated muscle catabolism is accomplished through upregulation of the ubiquitin-proteasome-proteolytic pathway. Furthermore, both EPA and CV -6504 have shown anti-cachectic properties, which could be used in the future for the treatment of cancer cachexia and other similar catabolic conditions.
Resumo:
This thesis is concerned with the experimental and theoretical investigation into the compression bond of column longitudinal reinforcement in the transference of axial load from a reinforced concrete column to a base. Experimental work includes twelve tests with square twisted bars and twenty four tests with ribbed bars. The effects of bar size, anchorage length in the base, plan area of the base, provision of bae tensile reinforcement, links around the column bars in the base, plan area of column and concrete compressive strength were investigated in the tests. The tests indicated that the strength of the compression anchorage of deformed reinforcing steel in the concrete was primarily dependent on the concrete strength and the resistance to bursting, which may be available within the anchorage . It was shown in the tests without concreted columns that due to a large containment over the bars in the foundation, failure occurred due to the breakdown of bond followed by the slip of the column bars along the anchorage length. The experimental work showed that the bar size , the stress in the bar, the anchorage length, provision of the transverse steel and the concrete compressive strength significantly affect the bond stress at failure. The ultimate bond stress decreases as the anchorage length is increased, while the ultimate bond stress increases with increasing each of the remainder parameters. Tests with concreted columns also indicated that a section of the column contributed to the bond length in the foundation by acting as an extra anchorage length. The theoretical work is based on the Mindlin equation( 3), an analytical method used in conjunction with finite difference calculus. The theory is used to plot the distribution of bond stress in the elastic and the elastic-plastic stage of behaviour. The theory is also used to plot the load-vertical displacement relationship of the column bars in the anchorage length, and also to determine the theoretical failure load of foundation. The theoretical solutions are in good agreement with the experimental results and the distribution of bond stress is shown to be significantly influenced by the bar stiffness factor K. A comparison of the experimental results with the current codes shows that the bond stresses currently used are low and in particular, CPIlO(56) specifies very conservative design bond stresses .