9 resultados para Scanning probe microscopy

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spray drying is widely used to manufacture many powdered products, with the drying process parameters having significant influence over the final powder's surface properties and propensity for unwanted caking. In most cases caking experiments are performed on bulk powders, but especially in multi-component powders, it is often difficult to interpret these results, where interaction effects between particles can be complex. Here the technique of scanning probe microscopy is used to characterize the nanoscale properties of spray dried model milk powders in order to investigate the surface properties of the powders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes. Copyright © Informa Healthcare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vesicular adjuvant systems composing dimethyldioctadecylammonium (DDA) can promote both cell-mediated and humoral immune responses to the tuberculosis vaccine fusion protein in mice. However, these DDA preparations were found to be physically unstable, forming aggregates under ambient storage conditions. Therefore there is a need to improve the stability of such systems without undermining their potent adjuvanticity. To this end, the effect of incorporating non-ionic surfactants, such as 1-monopalmitoyl glycerol (MP), in addition to cholesterol (Chol) and trehalose 6,6′-dibehenate (TDB), on the stability and efficacy of these vaccine delivery systems was investigated. Differential scanning calorimetry revealed a reduction in the phase transition temperature (T c) of DDA-based vesicles by ∼12°C when MP and cholesterol (1:1 molar ratio) were incorporated into the DDA system. Transmission electron microscopy (TEM) revealed the addition of MP to DDA vesicles resulted in the formation of multi-lamellar vesicles. Environmental scanning electron microscopy (ESEM) of MP-Chol-DDA-TDB (16:16:4:0.5 μmol) indicated that incorporation of antigen led to increased stability of the vesicles, perhaps as a result of the antigen embedding within the vesicle bilayers. At 4°C DDA liposomes showed significant vesicle aggregation after 28 days, although addition of MP-Chol or TDB was shown to inhibit this instability. Alternatively, at 25°C only the MP-based systems retained their original size. The presence of MP within the vesicle formulation was also shown to promote a sustained release of antigen in-vitro. The adjuvant activity of various systems was tested in mice against three subunit antigens, including mycobacterial fusion protein Ag85b-ESAT-6, and two malarial antigens (Merozoite surface protein 1, MSP1, and the glutamate rich protein, GLURP). The MP- and DDA-based systems induced antibody responses at comparable levels whereas the DDA-based systems induced more powerful cell-mediated immune responses. © 2006 The Authors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A plethora of techniques for the imaging of liposomes and other bilayer vesicles are available. However, sample preparation and the technique chosen should be carefully considered in conjunction with the information required. For example, larger vesicles such as multilamellar and giant unilamellar vesicles can be viewed using light microscopy and whilst vesicle confirmation and size prior to additional physical characterisations or more detailed microscopy can be undertaken, the technique is limited in terms of resolution. To consider the options available for visualising liposome-based systems, a wide range of microscopy techniques are described and discussed here: these include light, fluorescence and confocal microscopy and various electron microscopy techniques such as transmission, cryo, freeze fracture and environmental scanning electron microscopy. Their application, advantages and disadvantages are reviewed with regard to their use in analysis of lipid vesicles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors that influence this. However, there are a few methods that study these systems in their natural hydrated state; commonly, the liposomes are visualized after drying, staining and/or fixation of the vesicles. Environmental scanning electron microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. We were the first to use ESEM to study the liposomes and niosomes, and have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses onto, or evaporates from, the sample in real-time. This provides an insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay for liposome formulation and stability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two aspects of gold mineralisation in the Caledonides of the British Isles have been investigated: gold-telluride mineralisation at Clogau Mine, North Wales; and placer gold mineralisation in the Southern Uplands, Scotland. The primary ore assemblage at Clogau Mine is pyrite, arsenopyrite, cobaltite, pyrrhotine, chalcopyrite, galena, tellurbismuth, tetradymite, altaite, hessite, native gold, wehrlite, hedleyite, native bismuth, bismuthunite and various sulphosalts. The generalised paragenesis is early Fe, Co, Cu, As and S species, and later minerals of Pb, Bi, Ag, Au, Te, Sb. Electron probe micro-analysis (EPMA) of complex telluride-sulphide intergrowths suggests that these intergrowths formed by co-crystallisation/replacement processes and not exsolution. Minor element chemical variation, in the sulphides and tellurides, indicates that antimony and cadmium are preferentially partitioned into telluride minerals. Mineral stability diagrams suggest that during gold deposition log bf aTe2 was between -7.9 and -9.7 and log bf aS2 between -12.4 and -13.8. Co-existing mineral assemblages indicate that the final stages of telluride mineralisation were between c. 250 - 275oC. It is suggested that the high-grade telluride ore shoot was the result of remobilisation of Au, Bi, Ag and Te from low grade mineralisation elsewhere within the vein system, and that gold deposition was brought about by destabilisation of gold chloride complexes by interaction with graphite, sulphides and tellurbismuth. Scanning electron microscopy of planer gold grains from the Southern Uplands, Scotland, indicates that detailed studies on the morphology of placer gold can be used to elucidate the history of gold in the placer environment. In total 18 different morphological characteristics were identified. These were divided on an empirical basis, using the relative degree of mechanical attrition, into proximal and distal characteristics. One morphological characteristic (a porous/spongy surface at high magnification) is considered to be chemical in origin and represent the growth of `new' gold in the placer environment. The geographical distribution of morphological characteristics has been examined and suggests that proximal placer gold is spatially associated with the Loch Doon, Cairsphairn and Fleet granitoids. Quantitative EPMA of the placer gold reveals two compositional populations of placer gold. Examination of the geographical distribution of fineness suggests a loose spatial association between granitoids and low fineness placer gold. Also identified was chemically heterogeneous placer gold. EPMA studies of these heterogeneities allowed estimation of annealing history limits, which suggest that the heterogeneities formed between 150 and 235oC. It is concluded, on the basis of relationships between morphology and composition, that there are two types of placer gold in the Southern Uplands: (i) placer gold which is directly inherited from a hypogene source probably spatially associated with granitoids; and (ii) placer gold that has formed during supergene processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of ultrasonic agitation on deposition from two iron group alloy plating solutions, nickel-cobalt and bright nickel-iron, have been studied. Comparison has been made with deposits plated from the same solutions using controlled air agitation. The ultrasonic equipment employed had a fixed frequency of 13 KHz but the power output from each transducer was variable up to a maximum of 350 watts. The effects of air and ultrasonic agitation on hardness, ductility, tensile strength, composition, structure, surface topography, limiting current density, cathode current efficiency and macro-throwing power were determined. Transmission and scanning electron microscopy, electron-probe microanalysis and atomic absorption spectrophotometry have been employed to study the nickel alloy deposits produced. The results obtained show that the use of Ultrasonics increased significantly the hardness of both alloy deposits and altered their composition by decreasing the cobalt and iron contents from nickel-cobalt and nickeliron solutions respectively. The ductility of coatings improved but the tensile strength did not change very much. Ultrasonic agitation gave larger grained deposits than air and they seemed to have a lower stress. Dull cobalt-nickel deposits had a similar pyramidal surface topography regardless of the type of agitation but the bright appearance of the nickel-iron was destroyed by ultrasonic agitation; an unusual ribbed pattern was produced. The use of ultrasonic agitation permitted approximately a twofold increase in the plating current density at which sound deposits could be achieved but there was only a slight increase in cathode current efficiency. Macro-throwing power of the solutions was increased slightly by the use of ultrasonic agitation. ultrasonic agitation is an expensive means of agitating plating Solutions and would be worthwhile only if significant improvements in properties could be achieved. The simultaneous improvement in hardness and ductility is a novel feature that should have useful engineering applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The morphology, chemical composition, and mechanical properties in the surface region of α-irradiated polytetrafluoroethylene (PTFE) have been examined and compared to unirradiated specimens. Samples were irradiated with 5.5 MeV 4He2+ ions from a tandem accelerator to doses between 1 × 106 and 5 × 1010 Rad. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS), using a 20 keV C60+ source, was employed to probe chemical changes as a function of a dose. Chemical images and high resolution spectra were collected and analyzed to reveal the effects of a particle radiation on the chemical structure. Residual gas analysis (RGA) was utilized to monitor the evolution of volatile species during vacuum irradiation of the samples. Scanning electron microscopy (SEM) was used to observe the morphological variation of samples with increasing a particle dose, and nanoindentation was engaged to determine the hardness and elastic modulus as a function of a dose. The data show that PTFE nominally retains its innate chemical structure and morphology at a doses <109 Rad. At α doses ≥109 Rad the polymer matrix experiences increased chemical degradation and morphological roughening which are accompanied by increased hardness and declining elasticity. At  α doses >1010 Rad the polymer matrix suffers severe chemical degradation and material loss. Chemical degradation is observed in ToF-SIMS by detection of ions that are indicative of fragmentation, unsaturation, and functionalization of molecules in the PTFE matrix. The mass spectra also expose the subtle trends of crosslinking within the α-irradiated polymer matrix. ToF-SIMS images support the assertion that chemical degradation is the result of a particle irradiation and show morphological roughening of the sample with increased a dose. High resolution SEM images more clearly illustrate the morphological roughening and the mass loss that accompanies high doses of a particles. RGA confirms the supposition that the outcome of chemical degradation in the PTFE matrix with continuing irradiation is evolution of volatile species resulting in morphological roughening and mass loss. Finally, we reveal and discuss relationships between chemical structure and mechanical properties such as hardness and elastic modulus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors which can influence this. However, there are few methods which all us to study these systems in their natural hydrated state; commonly the liposomes are visualized after drying, staining, and/or fixation of the vesicles. Environmental Scanning Electron Microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. Within our studies we were the first to use ESEM to study liposomes and niosomes and we have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses on to, or evaporates from, the sample in real time. This provides insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay of liposome formulation and stability.