11 resultados para Satiety Quotient
em Aston University Research Archive
Resumo:
The increasing prevalence, variable pathogenesis, progressive natural history, and complications of type 2 diabetes emphasise the urgent need for new treatment strategies. Longacting (eg, once weekly) agonists of the glucagon-like-peptide-1 receptor are advanced in development, and they improve prandial insulin secretion, reduce excess glucagon production, and promote satiety. Trials of inhibitors of dipeptidyl peptidase 4, which enhance the effect of endogenous incretin hormones, are also nearing completion. Novel approaches to glycaemic regulation include use of inhibitors of the sodium-glucose cotransporter 2, which increase renal glucose elimination, and inhibitors of 11ß-hydroxysteroid dehydrogenase 1, which reduce the glucocorticoid effects in liver and fat. Insulin-releasing glucokinase activators and pancreatic-G-protein-coupled fatty-acid-receptor agonists, glucagon-receptor antagonists, and metabolic inhibitors of hepatic glucose output are being assessed. Early proof of principle has been shown for compounds that enhance and partly mimic insulin action and replicate some effects of bariatric surgery.
Resumo:
A multi-chromosome GA (Multi-GA) was developed, based upon concepts from the natural world, allowing improved flexibility in a number of areas including representation, genetic operators, their parameter rates and real world multi-dimensional applications. A series of experiments were conducted, comparing the performance of the Multi-GA to a traditional GA on a number of recognised and increasingly complex test optimisation surfaces, with promising results. Further experiments demonstrated the Multi-GA's flexibility through the use of non-binary chromosome representations and its applicability to dynamic parameterisation. A number of alternative and new methods of dynamic parameterisation were investigated, in addition to a new non-binary 'Quotient crossover' mechanism. Finally, the Multi-GA was applied to two real world problems, demonstrating its ability to handle mixed type chromosomes within an individual, the limited use of a chromosome level fitness function, the introduction of new genetic operators for structural self-adaptation and its viability as a serious real world analysis tool. The first problem involved optimum placement of computers within a building, allowing the Multi-GA to use multiple chromosomes with different type representations and different operators in a single individual. The second problem, commonly associated with Geographical Information Systems (GIS), required a spatial analysis location of the optimum number and distribution of retail sites over two different population grids. In applying the Multi-GA, two new genetic operators (addition and deletion) were developed and explored, resulting in the definition of a mechanism for self-modification of genetic material within the Multi-GA structure and a study of this behaviour.
Resumo:
Feeding behaviour of trained rainbow trout was investigated by the use of demand feeders, under different light conditions. The effects of the energy content of diet, and the size, colour and texture of feed pellets, on the feeding behaviour, were studied. An attempt was made to locate the assumed centres for feeding and satiety in the hypothalamus of brain by the intraperitoneal injections of goldthioglucose. Feeding under nine different constant photoperiods at 160 lux, at a temperature of 13.5°C, showed that trout exhibit a rhythmic pattern of feeding behaviour in all photoperiods except in continuous darkness.Feeding rhythms of trout attributable to the degree of gut distension were formed every eight to ten hours. Further studies by varying levels of light intensity revealed the interaction of light intensity and photoperiod. At shorter photoperiods lower levels of light intensity decreased the feeding activity in terms of food intake but by increasing the photoperiod the same feeding activity was accomplished as by the fish subject to a short photoperiod but under higher light intensity.Simulated effect of increasing and decreasing daylengths did not affect the overall food intake and growth performance. Trout are quite efficient in adjusting their food intake in terms of energy content. Colour, size and texture of feed pellets affect the feeding responses and elicit preferential food selection behaviour in trout. Goldthioglucose induced some reversable toxic effects upon general physiology of trout and did not produce any lesions in the assumed areas of feeding and satiety centres in the brain. It was concluded that the feeding behaviour of trout exhibited selective preferences according to the physical nature of food items and those preferences could be further influenced by the biotic and abiotic factors, light being one of the most important abiotic factors.
Resumo:
Type 2 diabetes is an insidious disorder, with micro and/or macrovascular and nervous damage occurring in many patients before diagnosis. This damage is caused by hyperglycaemia and the diverse effects of insulin resistance. Obesity, in particular central obesity, is a strong pre-disposing factor for type 2 diabetes. Skeletal muscle is the main site of insulin-stimulated glucose disposal and appears to be the first organ that becomes insulin resistant in the diabetic state, with later involvement of adipose tissue and the liver. This study has investigated the use of novel agents to ameliorate insulin-resistance in skeletal muscle as a means of identifying intervention sites against insulin resistance and of improving glucose uptake and metabolism by skeletal muscle. Glucose uptake was measured in vitro by cultured L6 myocytes and isolated muscles from normal and obese diabetic ob/ob mice, using either the tritiated non-metabolised glucose analogue 2-deoxy-D-glucose or by glucose disposal. Agents studied included lipoic acid, isoferulic acid, bradykinin, lipid mobilising factor (provisionally synonymous with Zinca2 glycoprotein) and the trace elements lithium, selenium and chromium. The putative role of TNFa in insulin resistance was also investigated. Lipoic acid improved insulin-stimulated glucose uptake in normal and insulin resistance murine muscles, as well as cultured myocytes. Isoferulic acid, bradykinin and LMF also produced a transient increase in glucose uptake in cultured myocytes. Physiological concentrations of TNFa were found to cause insulin resistance in cultured, but no in excised murine muscles. The effect of the M2 metabolite of the satiety-inducing agent sibutramine on lipolysis in excised murine and human adipocytes was also investigated. M2 increased lipolysis from normal lean and obese ob/ob mouse adipocytes. Arguably the most important observation was that M2 also increased the lipolytic rate in adipocytes from catecholamine resistant obese subjects. The studies reported in this thesis indicate that a diversity of agents can improve glucose uptake and ameliorate insulin resistance. It is likely that these agents are acting via different pathways. This thesis has also shown that M2 can induce lipolysis in both rodent and human adipocytes. M2 hence has potential to directly reduce adiposity, in addition to well documented effects via the central nervous system.
Resumo:
Impaired insulin action (insulin resistance) is a key factor in the pathogenesis of diabetes mellitus. To investigate therapeutic targets against insulin resistance, this thesis explores the mechanism of action of pharmacological agents and exogenous peptides known or suspected to modify insulin action. These included leptin, a hormone primarily involved in the regulation of body weight; sibutramine, an antiobesity agent; plant-derived compounds (pinitol and chamaemeloside) and agents known to affect insulin sensitivity, e.g. metformin, tolbutamide, thiazolidinediones, vanadyl sulphate and thioctic acid. Models used for investigation included the L6 skeletal muscle cell line and isolated skeletal muscles. In vivo studies were undertaken to investigate glycaemia, insulinaemia, satiety and body weight in streptozotocin-induced diabetic mice and obese (ob/ob) mice. Leptin acutely altered insulin action in skeletal muscle cells via the short form of the leptin receptor. This direct action of leptin was mediated via a pathway involving PI 3-kinase but not Jak2. The active metabolites of sibutramine had antidiabetic properties in vivo and directly improved insulin sensitivity in vitro. This effect appeared to be conducted via a non-PI 3-kinase-mediated increase in protein synthesis with facilitated glucose transport, and was independent of the serotonin and noradrenaline reuptake inhibition produced by sibutramine. Pinitol (a methyl inositol) had an insulin mimetic effect and was an effective glucose-lowering agent in insulinopenic states, acting directly on skeletal muscle. Conversely chamaemeloside appeared to improve glucose tolerance without directly altering glucose transport. Metformin directly increased basal glucose uptake independently of PI 3-kinase, possibly via an increase in the intrinsic activity of glucose transporters. Neither tolbutamide nor thiazolidinediones directly altered insulin sensitivity in L6 skeletal muscle cells: however vanadyl sulphate and thioctic acid increased glucose transport but appeared to exert toxic effects at therapeutic concentrations. Examination of glucose transport in skeletal muscle in this thesis has identified various components of post-receptor insulin signalling pathways which may be targeted to ameliorate insulin resistance. Type 2 Diabetes Mellitus Obesity L6 Skeletal Muscle Cells Glucose Transport Insulin Signalling 2
Resumo:
Objectives. The present study aimed to ascertain whether parental reports of their feeding practices are associated with independent observations of these behaviours, and whether the reliability of maternal report depends upon the child's weight. Methods. A total of 56 mothers and their children ate a lunch to satiety which was videotaped and coded for maternal use of control during feeding. Mothers also completed questionnaires about their feeding practices and children were weighed and measured. Results. Maternal reports of controlling feeding practices were poorly related to independent observations of these behaviours in the laboratory. However, there was a significant interaction between child BMI z score and observed pressure to eat in predicting maternally reported pressure to eat. There was also a significant interaction between child BMI z score and observed maternal restriction with food in predicting maternally reported restriction. When decomposed, these interactions suggested that only mothers of relatively underweight children were accurate at reporting their use of pressure to eat when compared to independent observations. For mothers of relatively overweight children there was a significant negative relationship between observed and reported restriction over food. Conclusions. Overall there was poor correspondence between maternal reports and independent observations of the use of controlling feeding practices. Further research is needed to replicate these findings and to ascertain whether parents who are inaccurate at reporting their use of these feeding practices are unaware that they are using controlling feeding practices or whether they are responding in socially desirable ways to questionnaires assessing their feeding behaviour. © 2011 Informa Healthcare.
Resumo:
Background: Children's emotional eating is related to greater body mass index and a less-healthy diet, but little is known about the early development of this behavior. Objective: This study aimed to examine the relations between preschool children's emotional eating and parental feeding practices by using experimental manipulation of child mood and food intake in a laboratory setting. Design: Twenty-five 3–5-y-old children and their mothers sat together and ate a standard meal to satiety. Mothers completed questionnaires regarding their feeding practices. Children were assigned to a control or negative mood condition, and their consumption of snack foods in the absence of hunger was measured. Results: Children whose mothers often used food to regulate emotions ate more cookies in the absence of hunger than did children whose mothers used this feeding practice infrequently, regardless of condition. Children whose mothers often used food for emotion regulation purposes ate more chocolate in the experimental condition than in the control condition. The pattern was reversed for children of mothers who did not tend to use food for emotion regulation. There were no significant effects of maternal use of restriction, pressure to eat, and use of foods as a reward on children's snack food consumption. Conclusions: Children of mothers who use food for emotion regulation consume more sweet palatable foods in the absence of hunger than do children of mothers who use this feeding practice infrequently. Emotional overeating behavior may occur in the context of negative mood in children whose mothers use food for emotion regulation purposes. This trial was registered at clinicaltrials.gov as NCT01122290.
Resumo:
The purpose of this study was to investigate the intra-familial relationships between parental reports of feeding practices used with siblings in the same family, and to evaluate whether differences in feeding practices are related to differences in siblings' eating behaviours. Eighty parents of two sibling children completed measures assessing their feeding practices and child eating behaviours. Parents reported using greater restrictive feeding practices with children who were fussier and desired to drink more than their sibling. Parents reported using more pressure to eat with siblings who were slower to eat, were fussier, emotionally under-ate, enjoyed food less, were less responsive to food, and were more responsive to internal satiety cues. Restriction and pressure to eat appear to be part of the non-shared environment which sibling children experience differently. These feeding practices may be used differently for children in the same family in response to child eating behaviours or other specific characteristics.
Resumo:
Sibutramine is a satiety-inducing serotonin-noradrenaline reuptake inhibitor that acts predominantly via its primary and secondary metabolites. This study investigates the possibility that sibutramine and/or its metabolites could act directly on white adipose tissue to increase lipolysis. Adipocytes were isolated by a collagenase digestion procedure from homozygous lean (+/+) and obese-diabetic ob/ob mice, and from lean nondiabetic human subjects. The lipolytic activity of adipocyte preparations was measured by the determination of glycerol release over a 2-hour incubation period. The primary amine metabolite of sibutramine M2, caused a concentration-dependent stimulation of glycerol release by murine lean and obese adipocytes (maximum increase by 157 ± 22 and 245 ± 1696, respectively, p < 0.05). Neither sibutramine nor its secondary amine metabolite M1 had any effect on lipolytic activity. Preliminary studies indicated that M2-induced lipolysis was mediated via a beta-adrenergic action. The non-selective beta-adrenoceptor antagonist propranolol (10-6M) strongly inhibited M2-stimulated lipolysis in lean and obese murine adipocytes. M2 similarly increased lipolysis by isolated human omental and subcutaneous adipocytes (maximum increase by 194 ± 33 and 136 ± 4%, respectively, p < 0.05) with EC50 values of 12 nM and 3 nM, respectively. These results indicate that the sibutramine metabolite M2 can act directly on murine and human adipose tissue to increase lipolysis via a pathway involving beta-adrenoceptors. © Georg Thieme Verlag KG Stuttgart.
Resumo:
Several pharmacotherapies have recently become available for addition to lifestyle measures to assist the management of coexistent type 2 diabetes and obesity. These are mostly administered as add-on to metformin or as alternative therapies if metformin is not appropriate. The sodium–glucose cotransporter 2 inhibitors (dapagliflozin, canagliflozin and empagliflozin) act by eliminating excess glucose in the urine. These agents provide a non-insulin-dependent mechanism to reduce hyperglycaemia and facilitate weight loss without causing frank hypoglycaemia. Their efficacy requires the individual to have adequate renal function. The glucagon-like peptide-1 (GLP-1) receptor agonists (exenatide, liraglutide, lixisenatide, dulaglutide and albiglutide [the last at the pre-launch stage at the time of writing]) are injected subcutaneously. Different members of the class offer different time courses for their onset and duration of action. Each potentiates insulin secretion and reduces glucagon secretion in a glucose-dependent manner to address prandial glycaemic excursions while avoiding interprandial hypoglycaemia. A satiety effect of these agents assists weight reduction, but delayed gastric emptying can cause initial nausea. The dipeptidyl peptidase-4 inhibitor class now comprises sitagliptin, vildagliptin, saxagliptin, linagliptin and alogliptin. These agents offer similar glucose-lowering efficacy without weight gain or hypoglycaemia by boosting the half-life of endogenous incretins, particularly GLP-1. A fixed-ratio injected combination of insulin degludec with liraglutide (IDegLira) has recently been launched and further agents to address hyperglycaemia and assist weight loss are advancing in development.
Resumo:
Picky eating is a childhood behavior that vexes many parents and is a symptom in the newer diagnosis of Avoidant/Restrictive Food Intake Disorder (ARFID) in adults. Pressure to eat, a parental controlling feeding practice aimed at encouraging a child to eat more, is associated with picky eating and a number of other childhood eating concerns. Low intuitive eating, an insensitivity to internal hunger and satiety cues, is also associated with a number of problem eating behaviors in adulthood. Whether picky eating and pressure to eat are predictive of young adult eating behavior is relatively unstudied. Current adult intuitive eating and disordered eating behaviors were self-reported by 170 college students, along with childhood picky eating and pressure through retrospective self- and parent reports. Hierarchical regression analyses revealed that childhood parental pressure to eat, but not picky eating, predicted intuitive eating and disordered eating symptoms in college students. These findings suggest that parental pressure in childhood is associated with problematic eating patterns in young adulthood. Additional research is needed to understand the extent to which parental pressure is a reaction to or perhaps compounds the development of problematic eating behavior.