2 resultados para Salovaara, Hannu
em Aston University Research Archive
Resumo:
In coeliac disease, the intake of dietary gluten induces small-bowel mucosal damage and the production of immunoglobulin (Ig)A class autoantibodies against transglutaminase 2 (TG2). We examined the effect of coeliac patient IgA on the apical-to-basal passage of gluten-derived gliadin peptides p31-43 and p57-68 in intestinal epithelial cells. We demonstrate that coeliac IgA enhances the passage of gliadin peptides, which could be abolished by inhibition of TG2 enzymatic activity. Moreover, we also found that both the apical and the basal cell culture media containing the immunogenic gliadin peptides were able to induce the proliferation of deamidation-dependent coeliac patient-derived T cells even in the absence of exogenous TG2. Our results suggest that coeliac patient IgA could play a role in the transepithelial passage of gliadin peptides, a process during which they might be deamidated.
Resumo:
Abstract Nutritional management of blood glucose levels is a strategic target in the prevention and management of type 2 diabetes mellitus (T2DM). To implement such an approach it is essential to understand the effect of food on glycaemic regulation and on the underlying metabolic derangements. This comprehensive review summarises the results from human dietary interventions exploring the impact of dietary components on blood glucose levels. Included are the major macronutrients; carbohydrate, protein and fat, micronutrient vitamins and minerals, non-nutrient phytochemicals and additional foods including low-calorie sweeteners, vinegar and alcohol. Based on the evidence presented in this review, it is clear that dietary components have significant and clinically relevant effects on blood glucose modulation. An integrated approach that includes reducing excess body weight, increased physical activity along with a dietary regime to regulate blood glucose levels will not only be advantages in T2DM management, but will benefit the health of the population and limit the increasing worldwide incidence of T2DM.