23 resultados para SYNCHRONIZATION OF CHAOS

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional use of global and centralised control methods, fails for large, complex, noisy and highly connected systems, which typify many real world industrial and commercial systems. This paper provides an efficient bottom up design of distributed control in which many simple components communicate and cooperate to achieve a joint system goal. Each component acts individually so as to maximise personal utility whilst obtaining probabilistic information on the global system merely through local message-passing. This leads to an implied scalable and collective control strategy for complex dynamical systems, without the problems of global centralised control. Robustness is addressed by employing a fully probabilistic design, which can cope with inherent uncertainties, can be implemented adaptively and opens a systematic rich way to information sharing. This paper opens the foreseen direction and inspects the proposed design on a linearised version of coupled map lattice with spatiotemporal chaos. A version close to linear quadratic design gives an initial insight into possible behaviours of such networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simulated classical dynamics of a small molecule exhibiting self-organizing behavior via a fast transition between two states is analyzed by calculation of the statistical complexity of the system. It is shown that the complexity of molecular descriptors such as atom coordinates and dihedral angles have different values before and after the transition. This provides a new tool to identify metastable states during molecular self-organization. The highly concerted collective motion of the molecule is revealed. Low-dimensional subspaces dynamics is found sensitive to the processes in the whole, high-dimensional phase space of the system. © 2004 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A synchronization scheme for a two-channel phase sensitive amplifier is implemented based on the injection-locking of single InP quantum-dash mode-locked laser. Error free performance with penalty <1 dB is demonstrated for both channels. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with synchronization of complex stochastic dynamical networks in the presence of noise and functional uncertainty. A probabilistic control method for adaptive synchronization is presented. All required probabilistic models of the network are assumed to be unknown therefore estimated to be dependent on the connectivity strength, the state and control values. Robustness of the probabilistic controller is proved via the Liapunov method. Furthermore, based on the residual error of the network states we introduce the definition of stochastic pinning controllability. A coupled map lattice with spatiotemporal chaos is taken as an example to illustrate all theoretical developments. The theoretical derivation is complemented by its validation on two representative examples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Frith has argued that people with autism show “weak central coherence,” an unusual bias toward piecemeal rather than configurational processing and a reduction in the normal tendency to process information in context. However, the precise cognitive and neurological mechanisms underlying weak central coherence are still unknown. We propose the hypothesis that the features of autism associated with weak central coherence result from a reduction in the integration of specialized local neural networks in the brain caused by a deficit in temporal binding. The visuoperceptual anomalies associated with weak central coherence may be attributed to a reduction in synchronization of high-frequency gamma activity between local networks processing local features. The failure to utilize context in language processing in autism can be explained in similar terms. Temporal binding deficits could also contribute to executive dysfunction in autism and to some of the deficits in socialization and communication.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In vivo, neurons of the globus pallidus (GP) and subthalamic nucleus (STN) resonate independently around 70 Hz. However, on the loss of dopamine as in Parkinson's disease, there is a switch to a lower frequency of firing with increased bursting and synchronization of activity. In vitro, type A neurons of the GP, identified by the presence of Ih and rebound depolarizations, fire at frequencies (≤80 Hz) in response to glutamate pressure ejection, designed to mimic STN input. The profile of this frequency response was unaltered by bath application of the GABAA antagonist bicuculline (10 μM), indicating the lack of involvement of a local GABA neuronal network, while cross-correlations of neuronal pairs revealed uncorrelated activity or phase-locked activity with a variable phase delay, consistent with each GP neuron acting as an independent oscillator. This autonomy of firing appears to arise due to the presence of intrinsic voltage- and sodium-dependent subthreshold membrane oscillations. GABAA inhibitory postsynaptic potentials are able to disrupt this tonic activity while promoting a rebound depolarization and action potential firing. This rebound is able to reset the phase of the intrinsic oscillation and provides a mechanism for promoting coherent firing activity in ensembles of GP neurons that may ultimately lead to abnormal and pathological disorders of movement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: This study aimed to explore methods of assessing interactions between neuronal sources using MEG beamformers. However, beamformer methodology is based on the assumption of no linear long-term source interdependencies [VanVeen BD, vanDrongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 1997;44:867-80; Robinson SE, Vrba J. Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Recent advances in Biomagnetism. Sendai: Tohoku University Press; 1999. p. 302-5]. Although such long-term correlations are not efficient and should not be anticipated in a healthy brain [Friston KJ. The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B Biol Sci 2000;355:215-36], transient correlations seem to underlie functional cortical coordination [Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 1999;49-65; Rodriguez E, George N, Lachaux J, Martinerie J, Renault B, Varela F. Perception's shadow: long-distance synchronization of human brain activity. Nature 1999;397:430-3; Bressler SL, Kelso J. Cortical coordination dynamics and cognition. Trends Cogn Sci 2001;5:26-36]. Methods: Two periodic sources were simulated and the effects of transient source correlation on the spatial and temporal performance of the MEG beamformer were examined. Subsequently, the interdependencies of the reconstructed sources were investigated using coherence and phase synchronization analysis based on Mutual Information. Finally, two interacting nonlinear systems served as neuronal sources and their phase interdependencies were studied under realistic measurement conditions. Results: Both the spatial and the temporal beamformer source reconstructions were accurate as long as the transient source correlation did not exceed 30-40 percent of the duration of beamformer analysis. In addition, the interdependencies of periodic sources were preserved by the beamformer and phase synchronization of interacting nonlinear sources could be detected. Conclusions: MEG beamformer methods in conjunction with analysis of source interdependencies could provide accurate spatial and temporal descriptions of interactions between linear and nonlinear neuronal sources. Significance: The proposed methods can be used for the study of interactions between neuronal sources. © 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents significant development into chaotic mixing induced through periodic boundaries and twisting flows. Three-dimensional closed and throughput domains are shown to exhibit chaotic motion under both time periodic and time independent boundary motions, A property is developed originating from a signature of chaos, sensitive dependence to initial conditions, which successfully quantifies the degree of disorder withjn the mixing systems presented and enables comparisons of the disorder throughout ranges of operating parameters, This work omits physical experimental results but presents significant computational investigation into chaotic systems using commercial computational fluid dynamics techniques. Physical experiments with chaotic mixing systems are, by their very nature, difficult to extract information beyond the recognition that disorder does, does not of partially occurs. The initial aim of this work is to observe whether it is possible to accurately simulate previously published physical experimental results through using commercial CFD techniques. This is shown to be possible for simple two-dimensional systems with time periodic wall movements. From this, and subsequent macro and microscopic observations of flow regimes, a simple explanation is developed for how boundary operating parameters affect the system disorder. Consider the classic two-dimensional rectangular cavity with time periodic velocity of the upper and lower walls, causing two opposing streamline motions. The degree of disorder within the system is related to the magnitude of displacement of individual particles within these opposing streamlines. The rationale is then employed in this work to develop and investigate more complex three-dimensional mixing systems that exhibit throughputs and time independence and are therefore more realistic and a significant advance towards designing chaotic mixers for process industries. Domains inducing chaotic motion through twisting flows are also briefly considered. This work concludes by offering possible advancements to the property developed to quantify disorder and suggestions of domains and associated boundary conditions that are expected to produce chaotic mixing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis explores translating well-written sequential programs in a subset of the Eiffel programming language - without syntactic or semantic extensions - into parallelised programs for execution on a distributed architecture. The main focus is on constructing two object-oriented models: a theoretical self-contained model of concurrency which enables a simplified second model for implementing the compiling process. There is a further presentation of principles that, if followed, maximise the potential levels of parallelism. Model of Concurrency. The concurrency model is designed to be a straightforward target for mapping sequential programs onto, thus making them parallel. It aids the compilation process by providing a high level of abstraction, including a useful model of parallel behaviour which enables easy incorporation of message interchange, locking, and synchronization of objects. Further, the model is sufficient such that a compiler can and has been practically built. Model of Compilation. The compilation-model's structure is based upon an object-oriented view of grammar descriptions and capitalises on both a recursive-descent style of processing and abstract syntax trees to perform the parsing. A composite-object view with an attribute grammar style of processing is used to extract sufficient semantic information for the parallelisation (i.e. code-generation) phase. Programming Principles. The set of principles presented are based upon information hiding, sharing and containment of objects and the dividing up of methods on the basis of a command/query division. When followed, the level of potential parallelism within the presented concurrency model is maximised. Further, these principles naturally arise from good programming practice. Summary. In summary this thesis shows that it is possible to compile well-written programs, written in a subset of Eiffel, into parallel programs without any syntactic additions or semantic alterations to Eiffel: i.e. no parallel primitives are added, and the parallel program is modelled to execute with equivalent semantics to the sequential version. If the programming principles are followed, a parallelised program achieves the maximum level of potential parallelisation within the concurrency model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aims to reproduce the effect of motor-unit synchronization on surface EMG recordings during vibratory stimulation to highlight vibration evoked muscle activity. The authors intended to evaluate, through numerical simulations, the changes in surface EMG spectrum in muscles undergoing whole body vibration stimulation. In some specific bands, in fact, vibration induced motion artifacts are also typically present. In addition, authors meant to compare the simulated EMGs with respect to real recordings in order to discriminate the effect of synchronization of motor units discharges with vibration frequencies from motion artifacts. Computations were performed using a model derived from previous studies and modified to consider the effect of vibratory stimulus, the motor unit synchronization and the endplates-electrodes relative position on the EMG signal. Results revealed that, in particular conditions, synchronization of MUs' discharge generates visible peaks at stimulation frequency and its harmonics. However, only a part of the total power of surface EMGs might be enclosed within artifacts related bands (±1. Hz centered at the stimulation frequency and its superior harmonics) even in case of strong synchronization of motor units discharges with the vibratory stimulus. © 2013 Elsevier Ireland Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parkinson's disease (PD) is associated with enhanced synchronization of neuronal network activity in the beta (15-30 Hz) frequency band across several nuclei of the basal ganglia (BG). Deep brain stimulation of the subthalamic nucleus (STN) appears to reduce this pathological oscillation, thereby alleviating PD symptoms. However, direct stimulation of primary motor cortex (M1) has recently been shown to be effective in reducing symptoms in PD, suggesting a role for cortex in patterning pathological rhythms. Here, we examine the properties of M1 network oscillations in coronal slices taken from rat brain. Oscillations in the high beta frequency range (layer 5, 27.8 +/- 1.1 Hz, n=6) were elicited by co-application of the glutamate receptor agonist kainic acid (400 nM) and muscarinic receptor agonist carbachol (50 mu M). Dual extracellular recordings, local application of tetrodotoxin and recordings in M1 micro-sections indicate that the activity originates within deep layers V/VI. Beta oscillations were unaffected by specific AMPA receptor blockade, abolished by the GABA type A receptor (GABAAR) antagonist picrotoxin and the gap-junction blocker carbenoxolone, and modulated by pentobarbital and zolpidem indicating dependence on networks of GABAergic interneurons and electrical coupling. High frequency stimulation (HFS) at 125 Hz in superficial layers, designed to mimic transdural/transcranial stimulation, generated gamma oscillations in layers 11 and V (incidence 95%, 69.2 +/- 7.3 Hz, n=17) with very fast oscillatory components (VFO; 100-250 Hz). Stimulation at 4 Hz, however, preferentially promoted theta activity (incidence 62.5%, 5.1 +/- 0.6 Hz, n=15) that effected strong amplitude modulation of ongoing beta activity. Stimulation at 20 Hz evoked mixed theta and gamma responses. These data suggest that within M1, evoked theta, gamma and fast oscillations may coexist with and in some cases modulate pharmacologically induced beta oscillations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this contribution, certain aspects of the nonlinear dynamics of magnetic field lines are reviewed. First, the basic facts (known from literature) concerning the Hamiltonian structure are briefly summarized. The paper then concentrates on the following subjects: (i) Transition from the continuous description to discrete maps; (ii) Characteristics of incomplete chaos; (iii) Control of chaos. The presentation is concluded by some remarks on the motion of particles in stochastic magnetic fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To ensure state synchronization of signalling operations, many signaling protocol designs choose to establish “soft” state that expires if it is not refreshed. The approaches of refreshing state in multi-hop signaling system can be classified as either end-to-end (E2E) or hop-by-hop (HbH). Although both state refresh approaches have been widely used in practical signaling protocols, the design tradeoffs between state synchronization and signaling cost have not yet been fully investigated. In this paper, we investigate this issue from the perspectives of state refresh and state removal. We propose simple but effective Markov chain models for both approaches and obtain closed-form solutions which depict the state refresh performance in terms of state consistency and refresh message rate, as well as the state removal performance in terms of state removal delay. Simulations verify the analytical models. It is observed that the HbH approach yields much better state synchronization at the cost of higher signaling cost than the E2E approach. While the state refresh performance can be improved by increasing the values of state refresh and timeout timers, the state removal delay increases largely for both E2E and HbH approaches. The analysis here shed lights on the design of signaling protocols and the configuration of the timers to adapt to changing network conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sensorimotor synchronization is hypothesized to arise through two different processes, associated with continuous or discontinuous rhythmic movements. This study investigated synchronization of continuous and discontinuous movements to different pacing signals (auditory or visual), pacing interval (500, 650, 800, 950 ms) and across effectors (non-dominant vs. non-dominant hand). The results showed that mean and variability of asynchronization errors were consistently smaller for discontinuous movements compared to continuous movements. Furthermore, both movement types were timed more accurately with auditory pacing compared to visual pacing and were more accurate with the dominant hand. Shortening the pacing interval also improved sensorimotor synchronization accuracy in both continuous and discontinuous movements. These results show the dependency of temporal control of movements on the nature of the motor task, the type and rate of extrinsic sensory information as well as the efficiency of the motor actuators for sensory integration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing.