8 resultados para SURFACE ELECTRONIC PHENOMENA

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Size-controlled MgO nanocrystals were synthesised via a simple sol-gel method and their bulk and surface properties characterised by powder XRD, HRTEM and XPS. Small, cubic MgO single crystals, generated by low temperature processing, expose weakly basic (100) surfaces. High temperature annealing transforms these into large, stepped cuboidal nanoparticles of periclase MgO which terminate in more basic (110) and (111) surfaces. The size dependent evolution of surface electronic structure correlates directly with the associated catalytic activity of these MgO nanocrystals towards glyceryl tributyrate transesterification, revealing a pronounced structural preference for (110) and (111) facets. © 2009 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface compositional changes in GaAs due to RF plasmas of different gases have been investigated by XPS and etch rates were measured using AFM. Angular Resolved XPS (ARXPS) was also employed for depth analysis of the composition of the surface layers. An important role in this study was determination of oxide thickness using XPS data. The study of surface - plasma interaction was undertaken by correlating results of surface analysis with plasma diagnosis. Different experiments were designed to accurately measure the BEs associated with the Ga 3d, Ga 2P3/2 and LMM peaks using XPS analysis and propose identification in terms of the oxides of GaAs. Along with GaAs wafers, some reference compounds such as metallic Ga and Ga2O3 powder were used. A separate study aiming the identification of the GaAs surface oxides formed on the GaAs surface during and after plasma processing was undertaken. Surface compositional changes after plasma treatment, prior to surface analysis are considered, with particular reference to the oxides formed in the air on the activated surface. Samples exposed to ambient air for different periods of time and also to pure oxygen were analysed. Models of surface processes were proposed for explanation of the stoichiometry changes observed with the inert and reactive plasmas used. In order to help with the understanding of the mechanisms responsible for surface effects during plasma treatment, computer simulation using SRIM code was also undertaken. Based on simulation and experimental results, models of surface phenomena are proposed. Discussion of the experimental and simulated results is made in accordance with current theories and published results of different authors. The experimental errors introduced by impurities and also by data acquisition and processing are also evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental and theoretical study of the impact behaviour of charged microparticles in a high voltage vacuum gap has been carried out to investigate under controlled conditions the role of low velocity microparticles (ζ 500 ms-1) in initiating electrical breakdown in such gaps. This has involved developing a unique (UHV) low-velocity source of micron-sized charged particles to study the underlying mechanical and electrical aspects of micro-particle impact on a range of target materials e.g. Pb, Ti, C, stainless-steel and mica etc., having atomically clean or oxidised surfaces. Argon-ion etching and electron-beam heating has been used for in-situ surface treatment and ellipsometry for characterising the target surfaces. An associated sphere/plane theoretical model has been developed for detailed analysis of the many complex electrical (in-flight in-field emission, M.I.M. tunnelling and ohmic conduction) and mechanical (impact dynamics, deformation and heating) phenomena that are involved when a microparticle closely approaches and impacts on a plane target. In each instance the influence of parameters such as particle radius, particle/target impact velocity, surface field, surface condition and material has been determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is concerned with a study of certain phenomena related to the performance and design of distributors in gas fluidized beds with particular regard to flowback of solid particles. The work to be described is divided into two parts. I. In Part one, a review of published material pertaining to distribution plates, including details from the patent specifications, has been prepared. After a chapter on the determination of the incipient fluidizing velocity, the following aspects of multi-orifice distributor plates in gas fluidized beds have been studied: (i) The effect of the distributor on bubble formation related to the way in which even distribution of bubbles on the top surface of the fluidized bed is obtained, e.g. the desirable pressure drop ratio ?PD/?PB for the even distribution of gas across the bed. Ratios of distributor pressure drop ?PD to bed pressure drop at which stable fluidization occurs show reasonable agreement with industrial practice. There is evidence that larger diameter beds tend to be less stable than smaller diameter beds when these are operated with shallow beds. Experiments show that in the presence of the bed the distributor pressure drop is reduced relative to the pressure drop without the bed, and this pressure drop in the former condition is regarded as the appropriate parameter for the design of the distributor. (ii) Experimental measurements of bubble distribution at the surface has been used to indicate maldistribution within the bed. Maldistribution is more likely at low gas flow rates and with distributors having large fractional free area characteristics (i.e. with distributors having low pressure drops). Bubble sizes obtained from this study, as well as those of others, have been successfully correlated. The correlation produced implies the existence of a bubble at the surface of an orifice and its growth by the addition of excess gas from the fluidized bed. (iii) For a given solid system, the amount of defluidized particles stagnating on the distributor plate is influenced by the orifice spacing, bed diameter and gas flow rate, but independent of the initial bed height and the way the orifices are arranged on the distributor plate. II. In Part two, solids flowback through single and multi-orifice distributors in two-dimensional and cylindrical beds of solids fluidized with air has been investigated. Distributors equipped with long cylindrical nozzles have also been included in the study. An equation for the prediction of free flowback of solids through multi-orifice distributors has been derived. Under fluidized conditions two regimes of flowback have been differentiated, namely Jumping and weeping. Data in the weeping regime have been successfully correlated. The limiting gas velocity through the distributor orifices at which flowback is completely excluded is found to be indepnndent of bed height, but a function of distributor design and physical properties of gas and solid used. A criterion for the prediction of this velocity has been established. The decisive advantage of increasing the distributor thickness or using nozzles to minimize solids flowback in fluidized beds has been observed and the opportunity taken to explore this poorly studied subject area. It has been noted, probably for the first time, that with long nozzles, there exists a critical nozzle length above which uncontrollable downflow of solids occurs. A theoretical model for predicting the critical length of a bundle of nozzles in terms of gas velocity through the nozzles has been set up. Theoretical calculations compared favourably with experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter deals initially with the underlying principles of adhesion and adhesives and the understanding of interfacial behaviour. This provides a basis upon which to understand biological interactions (. Chapter 12). The two broad types of adhesive materials encountered in wound healing are pressure-sensitive adhesives (PSA) and tissue sealants. The function of pressure-sensitive adhesives is to form an adhesive bond between tissue and biomaterial under the influence of pressure. Tissue sealants are liquids that convert to solid form at the tissue surface and in so doing form either an effective seal against fluid leakage or a bond between adjacent tissue surfaces. The different requirements and characteristics of these systems are discussed. © 2011 Woodhead Publishing Limited All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many Prussian Blue Analogues are known to show a thermally induced phase transition close to room temperature and a reversible, photo-induced phase transition at low temperatures. This work reports on magnetic measurements, X-ray photoemission and Raman spectroscopy on a particular class of these molecular heterobimetallic systems, specifically on Rb0.81Mn[Fe(CN)6]0.95_1.24H2O, Rb0.97Mn[Fe(CN)6]0.98_1.03H2O and Rb0.70Cu0.22Mn0.78[Fe(CN)6]0.86_2.05H2O, to investigate these transition phenomena both in the bulk of the material and at the sample surface. Results indicate a high degree of charge transfer in the bulk, while a substantially reduced conversion is found at the sample surface, even in case of a near perfect (Rb:Mn:Fe=1:1:1) stoichiometry. Thus, the intrinsic incompleteness of the charge transfer transition in these materials is found to be primarily due to surface reconstruction. Substitution of a large fraction of charge transfer active Mn ions by charge transfer inactive Cu ions leads to a proportional conversion reduction with respect to the maximum conversion that is still stoichiometrically possible and shows the charge transfer capability of metal centers to be quite robust upon inclusion of a neighboring impurity. Additionally, a 532 nm photo-induced metastable state, reminiscent of the high temperature Fe(III)Mn(II) ground state, is found at temperatures 50-100 K. The efficiency of photo-excitation to the metastable state is found to be maximized around 90 K. The photo-induced state is observed to relax to the low temperature Fe(II)Mn(III) ground state at a temperature of approximately 123 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preliminary work is reported on 2-D and 3-D microstructures written directly with a Yb:YAG 1026 nm femtosecond (fs) laser on bulk chemical vapour deposition (CVD) single-crystalline diamond. Smooth graphitic lines and other structures were written on the surface of a CVD diamond sample with a thickness of 0.7mm under low laser fluences. This capability opens up the opportunity for making electronic devices and micro-electromechanical structures on diamond substrates. The fabrication process was optimised through testing a range of laser energies at a 100 kHz repetition rate with sub-500fs pulses. These graphitic lines and structures have been characterised using optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. Using these analysis techniques, the formation of sp2 and sp3 bonds is explored and the ratio between sp2 and sp3 bonds after fs laser patterning is quantified. We present the early findings from this study and characterise the relationship between the graphitic line formation and the different fs laser exposure conditions. © 2012 Taylor & Francis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of the wound dressing as a biomaterial with the wound bed is the central issue of this chapter. The interfacial phenomenon that encompasses the biological and biochemical consequences that arise when a biomaterial is introduced to a host biological environment is discussed. A great deal can be learned from observations arising from the behaviour of biomaterials at other body sites; one particularly relevant body site in the context of wound healing is the anterior eye. The cornea, tear film and posterior surface of the contact lens provide an informative model of the parallel interface that exists between the chronic wound bed, wound fluid and the dressing biomaterial. © 2011 Woodhead Publishing Limited All rights reserved.