10 resultados para SUBMUCOUS CLEFT PALATE
em Aston University Research Archive
Resumo:
OBJECTIVES: We describe the methodology for a major study investigating the impact of reconfigured cleft care in the United Kingdom (UK) 15 years after an initial survey, detailed in the Clinical Standards Advisory Group (CSAG) report in 1998, had informed government recommendations on centralization. SETTING AND SAMPLE POPULATION: This is a UK multicentre cross-sectional study of 5-year-olds born with non-syndromic unilateral cleft lip and palate. Children born between 1 April 2005 and 31 March 2007 were seen in cleft centre audit clinics. MATERIALS AND METHODS: Consent was obtained for the collection of routine clinical measures (speech recordings, hearing, photographs, models, oral health, psychosocial factors) and anthropometric measures (height, weight, head circumference). The methodology for each clinical measure followed those of the earlier survey as closely as possible. RESULTS: We identified 359 eligible children and recruited 268 (74.7%) to the study. Eleven separate records for each child were collected at the audit clinics. In total, 2666 (90.4%) were collected from a potential 2948 records. The response rates for the self-reported questionnaires, completed at home, were 52.6% for the Health and Lifestyle Questionnaire and 52.2% for the Satisfaction with Service Questionnaire. CONCLUSIONS: Response rates and measures were similar to those achieved in the previous survey. There are practical, administrative and methodological challenges in repeating cross-sectional surveys 15 years apart and producing comparable data.
Resumo:
OBJECTIVES: To compare oral health and hearing outcomes from the Clinical Standards Advisory Group (CSAG, 1998) and the Cleft Care UK (CCUK, 2013) studies. SETTING AND SAMPLE POPULATION: Two UK-based cross-sectional studies of 5-year-olds born with non-syndromic unilateral cleft lip and palate undertaken 15 years apart. CSAG children were treated in a dispersed model of care with low-volume operators. CCUK children were treated in a centralized, high volume operator system. MATERIALS AND METHODS: Oral health data were collected using a standardized proforma. Hearing was assessed using pure tone audiometry and middle ear status by otoscopy and tympanometry. ENT and hearing history were collected from medical notes and parental report. RESULTS: Oral health was assessed in 264 of 268 children (98.5%). The mean dmft was 2.3, 48% were caries free, and 44.7% had untreated caries. There was no evidence this had changed since the CSAG survey. Oral hygiene was generally good, 96% were enrolled with a dentist. Audiology was assessed in 227 of 268 children (84.7%). Forty-three per cent of children received at least one set of grommets--a 17.6% reduction compared to CSAG. Abnormal middle ear status was apparent in 50.7% of children. There was no change in hearing levels, but more children with hearing loss were managed with hearing aids. CONCLUSIONS: Outcomes for dental caries and hearing were no better in CCUK than in CSAG, although there was reduced use of grommets and increased use of hearing aids. The service specifications and recommendations should be scrutinized and implemented.
Resumo:
OBJECTIVES: We summarize and critique the methodology and outcomes from a substantial study which has investigated the impact of reconfigured cleft care in the United Kingdom (UK) 15 years after the UK government started to implement the centralization of cleft care in response to an earlier survey in 1998, the Clinical Standards Advisory Group (CSAG). SETTING AND SAMPLE POPULATION: A UK multicentre cross-sectional study of 5-year-olds born with non-syndromic unilateral cleft lip and palate. Data were collected from children born in the UK with a unilateral cleft lip and palate between 1 April 2005 and 31 March 2007. MATERIALS AND METHODS: We discuss and contextualize the outcomes from speech recordings, hearing, photographs, models, oral health and psychosocial factors in the current study. We refer to the earlier survey and other relevant studies. RESULTS: We present arguments for centralization of cleft care in healthcare systems, and we evidence this with improvements seen over a period of 15 years in the UK. We also make recommendations on how future audit and research may configure. CONCLUSIONS: Outcomes for children with a unilateral cleft lip and palate have improved after the introduction of a centralized multidisciplinary service, and other countries may benefit from this model. Predictors of early outcomes are still needed, and repeated cross-sectional studies, larger longitudinal studies and adequately powered trials are required to create a research-led evidence-based (centralized) service.
Resumo:
A mathematical model is presented for steady fluid flow across microvessel walls through a serial pathway consisting of the endothelial surface glycocalyx and the intercellular cleft between adjacent endothelial cells, with junction strands and their discontinuous gaps. The three-dimensional flow through the pathway from the vessel lumen to the tissue space has been computed numerically based on a Brinkman equation with appropriate values of the Darcy permeability. The predicted values of the hydraulic conductivity Lp, defined as the ratio of the flow rate per unit surface area of the vessel wall to the pressure drop across it, are close to experimental measurements for rat mesentery microvessels. If the values of the Darcy permeability for the surface glycocalyx are determined based on the regular arrangements of fibres with 6nm radius and 8nm spacing proposed recently from the detailed structural measurements, then the present study suggests that the surface glycocalyx could be much less resistant to flow compared to previous estimates by the one-dimensional flow analyses, and the intercellular cleft could be a major determinant of the hydraulic conductivity of the microvessel wall.
Resumo:
The experiments described in this thesis compared conventional methods of screening for neurotoxins with potential electrophysiological and pharmacological tests in an attempt to improve the sensitivity of detection of progressive distal neuropathy. Adult male albino mice were dosed orally with the neurotoxicant acylamide and subjected to a test of limb strength and co-ordination and a functional observational battery. These methods established a no observable effect level of 10 mg/kg. A dose of 200 mg/kg resulted in abnormalities of gait and reduced limb strength and/or co-ordination. Analysis of the in vitro 'jitter' of the latency of trains of action potentials evoked at a frequency of 30 Hz in the mouse phrenic nerve/hemidiaphragm preparation showed this technique to be unsuitable for detection of the early phases of acrylamide induced peripheral neuropathy (l00 mg/kg). The evoked and spontaneous twitch responses of the hemidiaphragm preparation following in vitro exposure to the organophosphorous anticholinesterase compound ecothiopate were altered by in vivo pre treatment with acrylamide. Acrylamide caused an increase in the time course of the potentiation of stimulated twitches and a decrease in the maximum potentiation. Spontaneous twitches were reduced in amplitude and frequency. These effects occurred at an acrylamide dose level insufficient to cause clinical signs of neuropathy. Investigations into the mechanisms underlying these observations yielded the following observations. Analysis of miniature endplate potentials at this dose level indicated prolongation of the life of acetylcholine in the synaptic cleft but the implied decrease in cholinesterase activity could not be demonstrated biochemically or histologically. The electrical excitability of the nerve terminal region of phrenic motor nerves was reduced following acrylamide although a possible compromise of antidromic action potential conduction could not be confirmed. There was no histopathological evidence of neuropathy at this dose level. Further exploration of this phenomenon is desirable in order to ascertain whether the effect is specific to acrylamide and/or ecothiopate and to elucidate the mechanisms behind these novel observations.
Resumo:
Current knowledge of the long-term, low dose effects of carbamate (CB) anti-cholinesterases on skeletal muscle or on the metabolism and regulation of the molecular forms of acetylcholinesterase (AChE) is limited. This is largely due to the reversible nature of these inhibitors and the subtle effects they induce which has generally made their study difficult and preliminary investigations were conducted to determine suitable study methods. A sequential extraction technique was used to rapidly analyse AChE molecular form activity at the mouse neuromuscular junction and also in peripheral parts of muscle fibres. AChE in the synaptic cleft involved in the termination of cholinergic transmission was successfully assessed by the assay method and by an alternative method using a correlation equation which represented the relationship between synaptic AChE and the prolongation of extra-cellular miniature endplate potentials. It was found that inhibition after in vivo Carbamate (CB) dosing could not be maintained during tissue analysis because CB-inhibited enzyme complexes decarbamoylated vary rapidly and could not be prevented even when maintained on ice. The methods employed did not therefore give a measure of inhibition but presented a profile of metabolic responses to continual, low dose CB treatment. Repetitive and continual infusion with low doses of the CBs: pyridostigmine and physostigmine induced a variety of effects on mouse skeletal muscle. Both compounds induced a mild myopathy in the mouse diaphragm during continual infusion which was characterised by endplate deformation without necrosis; such deformation persisted on termination of treatment but had recovered slightly 14 days later. Endplate and non-endplate AChE molecular forms displayed selective responses to CB treatment. During treatment endplate AChE was reduced whereas non-endplate AChE was largely unaffected, and after treatment, endplate AChE recovered, whereas non-endplate AChE was up-regulated. The mechanisms by which these responses become manifest are unclear but may be due to CB-induced effects on nerve-mediated muscle activity, neurotrophic factors or morphological and physiological changes which arise at the neuromuscular junction. It was concluded that, as well as inhibiting AChE, CBs also influence the metabolism and regulation of the enzyme and induce persistent endplate deformation; possible detrimental effects of long-term, low-dose determination requires further investigation.
Resumo:
The NT2.D1 cell line is one of the most well-documented embryocarcinoma cell lines, and can be differentiated into neurons and astrocytes. Great focus has also been placed on defining the electrophysiological properties of the neuronal cells, and more recently we have investigated the functional properties of their associated astrocytes. We now show for the first time that human stem cell-derived astrocytes produce glycogen and that co-cultures of these cells demonstrate a functional astrocyte-neuron lactate shuttle (ANLS). The ANLS hypothesis proposes that during neuronal activity, glutamate released into the synaptic cleft is taken up by astrocytes and triggers glucose uptake, which is converted into lactate and released via monocarboxylate transporters for neuronal use. Using mixed cultures of NT2-derived neurons and astrocytes, we have shown that these cells modulate their glucose uptake in response to glutamate. Additionally, we demonstrate that in response to increased neuronal activity and under hypoglycaemic conditions, co-cultures modulate glycogen turnover and increase lactate production. Similar results were also shown after treatment with glutamate, potassium, isoproterenol, and dbcAMP. Together, these results demonstrate for the first time a functional ANLS in a human stem cell-derived co-culture. © 2013 ISCBFM.
Resumo:
A set of 38 epitopes and 183 non-epitopes, which bind to alleles of the HLA-A3 supertype, was subjected to a combination of comparative molecular similarity indices analysis (CoMSIA) and soft independent modeling of class analogy (SIMCA). During the process of T cell recognition, T cell receptors (TCR) interact with the central section of the bound nonamer peptide; thus only positions 4−8 were considered in the study. The derived model distinguished 82% of the epitopes and 73% of the non-epitopes after cross-validation in five groups. The overall preference from the model is for polar amino acids with high electron density and the ability to form hydrogen bonds. These so-called “aggressive” amino acids are flanked by small-sized residues, which enable such residues to protrude from the binding cleft and take an active role in TCR-mediated T cell recognition. Combinations of “aggressive” and “passive” amino acids in the middle part of epitopes constitute a putative TCR binding motif
Resumo:
Hydrogen bonds play important roles in maintaining the structure of proteins and in the formation of most biomolecular protein-ligand complexes. All amino acids can act as hydrogen bond donors and acceptors. Among amino acids, Histidine is unique, as it can exist in neutral or positively charged forms within the physiological pH range of 5.0 to 7.0. Histidine can thus interact with other aromatic residues as well as forming hydrogen bonds with polar and charged residues. The ability of His to exchange a proton lies at the heart of many important functional biomolecular interactions, including immunological ones. By using molecular docking and molecular dynamics simulation, we examine the influence of His protonation/deprotonation on peptide binding affinity to MHC class II proteins from locus HLA-DP. Peptide-MHC interaction underlies the adaptive cellular immune response, upon which the next generation of commercially-important vaccines will depend. Consistent with experiment, we find that peptides containing protonated His residues bind better to HLA-DP proteins than those with unprotonated His. Enhanced binding at pH 5.0 is due, in part, to additional hydrogen bonds formed between peptide His+ and DP proteins. In acidic endosomes, protein His79β is predominantly protonated. As a result, the peptide binding cleft narrows in the vicinity of His79β, which stabilizes the peptide - HLA-DP protein complex. © 2014 Bentham Science Publishers.
Resumo:
The development of stem cell-derived neuronal networks will promote experimental system development for drug screening, toxicological testing and disease modelling, providing that they mirror closely the functional competencies of their in vivo counterparts. The NT2 cell line is one of the best documented embryocarcinoma cell lines, and can be differentiated into neurons and astrocytes. Great focus has also been placed on defining the electrophysiological properties of these cells, and more recently we have investigated the functional properties of their associated astrocytes. We now show for the first time in a human stem cell derived co-culture model that these cultures are also metabolically competent and demonstrate a functional astrocyte neuron lactate shuttle (ANLS). The ANLS hypothesis proposes that during neuronal activity, glutamate released into the synaptic cleft is taken up by astrocytes and triggers glucose uptake which is converted into lactate and released via monocarboxylate transporters for neuronal use. Using mixed cultures of NT2 derived neurons and astrocytes we have shown that these cells modulate their glucose uptake in response to glutamate, an effect that was blocked by cytochalasin B and ouabain. Additionally we demonstrate that in response to increased neuronal activity and under hypoglycaemic conditions, co-cultures modulate glycogen turnover and increase lactate production. Similar results were also shown following treatment with glutamate, potassium, Isoproterenol and dbcAMP. Together these results demonstrate for the first time a functional ANLS in a human stem cell derived co-culture.