13 resultados para STABILITY ANALYSIS

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonlinear dynamic model of microbial growth is established based on the theories of the diffusion response of thermodynamics and the chemotactic response of biology. Except for the two traditional variables, i.e. the density of bacteria and the concentration of attractant, the pH value, a crucial influencing factor to the microbial growth, is also considered in this model. The pH effect on the microbial growth is taken as a Gaussian function G0e-(f- fc)2/G1, where G0, G1 and fc are constants, f represents the pH value and fc represents the critical pH value that best fits for microbial growth. To study the effects of the reproduction rate of the bacteria and the pH value on the stability of the system, three parameters a, G0 and G1 are studied in detail, where a denotes the reproduction rate of the bacteria, G0 denotes the impacting intensity of the pH value to microbial growth and G1 denotes the bacterial adaptability to the pH value. When the effect of the pH value of the solution which microorganisms live in is ignored in the governing equations of the model, the microbial system is more stable with larger a. When the effect of the bacterial chemotaxis is ignored, the microbial system is more stable with the larger G1 and more unstable with the larger G0 for f0 > fc. However, the stability of the microbial system is almost unaffected by the variation G0 and G1 and it is always stable for f0 < fc under the assumed conditions in this paper. In the whole system model, it is more unstable with larger G1 and more stable with larger G0 for f0 < fc. The system is more stable with larger G1 and more unstable with larger G0 for f0 > fc. However, the system is more unstable with larger a for f0 < fc and the stability of the system is almost unaffected by a for f0 > fc. The results obtained in this study provide a biophysical insight into the understanding of the growth and stability behavior of microorganisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multicriteria decision problems many values must be assigned, such as the importance of the different criteria and the values of the alternatives with respect to subjective criteria. Since these assignments are approximate, it is very important to analyze the sensitivity of results when small modifications of the assignments are made. When solving a multicriteria decision problem, it is desirable to choose a decision function that leads to a solution as stable as possible. We propose here a method based on genetic programming that produces better decision functions than the commonly used ones. The theoretical expectations are validated by case studies. © 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transition of internally heated inclined plane parallel shear flows is examined numerically for the case of finite values of the Prandtl number Pr. We show that as the strength of the homogeneously distributed heat source is increased the basic flow loses stability to two-dimensional perturbations of the transverse roll type in a Hopf bifurcation for the vertical orientation of the fluid layer, whereas perturbations of the longitudinal roll type are most dangerous for a wide range of the value of the angle of inclination. In the case of the horizontal inclination transverse roll and longitudinal roll perturbations share the responsibility for the prime instability. Following the linear stability analysis for the general inclination of the fluid layer our attention is focused on a numerical study of the finite amplitude secondary travelling-wave solutions (TW) that develop from the perturbations of the transverse roll type for the vertical inclination of the fluid layer. The stability of the secondary TW against three-dimensional perturbations is also examined and our study shows that for Pr=0.71 the secondary instability sets in as a quasi-periodic mode, while for Pr=7 it is phase-locked to the secondary TW. The present study complements and extends the recent study by Nagata and Generalis (2002) in the case of vertical inclination for Pr=0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-linear solutions and studies of their stability are presented for flows in a homogeneously heated fluid layer under the influence of a constant pressure gradient or when the mass flux across any lateral cross-section of the channel is required to vanish. The critical Grashof number is determined by a linear stability analysis of the basic state which depends only on the z-coordinate perpendicular to the boundary. Bifurcating longitudinal rolls as well as secondary solutions depending on the streamwise x-coordinate are investigated and their amplitudes are determined as functions of the supercritical Grashof number for various Prandtl numbers and angles of inclination of the layer. Solutions that emerge from a Hopf bifurcation assume the form of propagating waves and can thus be considered as steady flows relative to an appropriately moving frame of reference. The stability of these solutions with respect to three-dimensional disturbances is also analyzed in order to identify possible bifurcation points for evolving tertiary flows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantitative evidence that establishes the existence of the hairpin vortex state (HVS) in plane Couette flow (PCF) is provided in this work. The evidence presented in this paper shows that the HVS can be obtained via homotopy from a flow with a simple geometrical configuration, namely, the laterally heated flow (LHF). Although the early stages of bifurcations of LHF have been previously investigated, our linear stability analysis reveals that the root in the LHF yields multiple branches via symmetry breaking. These branches connect to the PCF manifold as steady nonlinear amplitude solutions. Moreover, we show that the HVS has a direct bifurcation route to the Rayleigh-Bénard convection. © 2010 The American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stability of internally heated inclined plane parallel shear flows is examined numerically for the case of finite value of the Prandtl number, Pr. The transition in a vertical channel has already been studied for 0≤Pr≤100 with or without the application of an external pressure gradient, where the secondary flow takes the form of travelling waves (TWs) that are spanwise-independent (see works of Nagata and Generalis). In this work, in contrast to work already reported (J. Heat Trans. T. ASME 124 (2002) 635-642), we examine transition where the secondary flow takes the form of longitudinal rolls (LRs), which are independent of the steamwise direction, for Pr=7 and for a specific value of the angle of inclination of the fluid layer without the application of an external pressure gradient. We find possible bifurcation points of the secondary flow by performing a linear stability analysis that determines the neutral curve, where the basic flow, which can have two inflection points, loses stability. The linear stability of the secondary flow against three-dimensional perturbations is also examined numerically for the same value of the angle of inclination by employing Floquet theory. We identify possible bifurcation points for the tertiary flow and show that the bifurcation can be either monotone or oscillatory. © 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents an analysis of the stability of complex distribution networks. We present a stability analysis against cascading failures. We propose a spin [binary] model, based on concepts of statistical mechanics. We test macroscopic properties of distribution networks with respect to various topological structures and distributions of microparameters. The equilibrium properties of the systems are obtained in a statistical mechanics framework by application of the replica method. We demonstrate the validity of our approach by comparing it with Monte Carlo simulations. We analyse the network properties in terms of phase diagrams and found both qualitative and quantitative dependence of the network properties on the network structure and macroparameters. The structure of the phase diagrams points at the existence of phase transition and the presence of stable and metastable states in the system. We also present an analysis of robustness against overloading in the distribution networks. We propose a model that describes a distribution process in a network. The model incorporates the currents between any connected hubs in the network, local constraints in the form of Kirchoff's law and a global optimizational criterion. The flow of currents in the system is driven by the consumption. We study two principal types of model: infinite and finite link capacity. The key properties are the distributions of currents in the system. We again use a statistical mechanics framework to describe the currents in the system in terms of macroscopic parameters. In order to obtain observable properties we apply the replica method. We are able to assess the criticality of the level of demand with respect to the available resources and the architecture of the network. Furthermore, the parts of the system, where critical currents may emerge, can be identified. This, in turn, provides us with the characteristic description of the spread of the overloading in the systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Potential applications of high-damping and high-stiffness composites have motivated extensive research on the effects of negative-stiffness inclusions on the overall properties of composites. Recent theoretical advances have been based on the Hashin-Shtrikman composite models, one-dimensional discrete viscoelastic systems and a two-dimensional nested triangular viscoelastic network. In this paper, we further analyze the two-dimensional triangular structure containing pre-selected negative-stiffness components to study its underlying deformation mechanisms and stability. Major new findings are structure-deformation evolution with respect to the magnitude of negative stiffness under shear loading and the phenomena related to dissipation-induced destabilization and inertia-induced stabilization, according to Lyapunov stability analysis. The evolution shows strong correlations between stiffness anomalies and deformation modes. Our stability results reveal that stable damping peaks, i.e. stably extreme effective damping properties, are achievable under hydrostatic loading when the inertia is greater than a critical value. Moreover, destabilization induced by elemental damping is observed with the critical inertia. Regardless of elemental damping, when the inertia is less than the critical value, a weaker system instability is identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interactions between the wakes in a flow past a row of square bars are investigated by numerical simulations, the linear stability analysis and the bifurcation analysis. It is assumed that the row of square bars is placed across a uniform flow. Two-dimensional and incompressible flow field is also assumed. The flow is steady and symmetric along a streamwise centerline through the center of each square bar at low Reynolds numbers. However, it becomes unsteady and periodic in time at the Reynolds numbers larger than a critical value, and then the wakes behind the square bars become oscillatory. It is found by numerical simulations that vortices are shed synchronously from every couple of adjacent square bars in the same phase or in the anti-phase depending upon the distance between the bars. The synchronous shedding of vortices is clarified to occur due to an instability of the steady symmetric flow by the linear stability analysis. The bifurcation diagram of the flow is obtained and the critical Reynolds number of the instability is evaluated numerically.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the simplest ways to create nonlinear oscillations is the Hopf bifurcation. The spatiotemporal dynamics observed in an extended medium with diffusion (e.g., a chemical reaction) undergoing this bifurcation is governed by the complex Ginzburg-Landau equation, one of the best-studied generic models for pattern formation, where besides uniform oscillations, spiral waves, coherent structures and turbulence are found. The presence of time delay terms in this equation changes the pattern formation scenario, and different kind of travelling waves have been reported. In particular, we study the complex Ginzburg-Landau equation that contains local and global time-delay feedback terms. We focus our attention on plane wave solutions in this model. The first novel result is the derivation of the plane wave solution in the presence of time-delay feedback with global and local contributions. The second and more important result of this study consists of a linear stability analysis of plane waves in that model. Evaluation of the eigenvalue equation does not show stabilisation of plane waves for the parameters studied. We discuss these results and compare to results of other models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transition of laterally heated flows in a vertical layer and in the presence of a streamwise pressure gradient is examined numerically for the case of different values Prandtl number. The stability analysis of the basic flow for the pure hydrodynamic case ( Pr = 0 ) was reported in [1]. We find that in the absence of transverse pumping the previously known critical parameters are recovered [2], while as the strength of the Poiseuille flow component is increased the convective motion is delayed considerably. Following the linear stability analysis for the vertical channel flow our attention is focused on a study of the finite am- plitude secondary travelling-wave (TW) solutions that develop from the perturbations of the transverse roll type imposed on the basic flow and temperature profiles. The linear stability of the secondary TWs against three-dimensional perturbations is also examined and it is shown that the bifurcating tertiary flows are phase-locked to the secondary TWs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the suppression of spatiotemporal chaos in the complex GinzburgLandau equation by a combined global and local time-delay feedback. Feedback terms are implemented as a control scheme, i.e., they are proportional to the difference between the time-delayed state of the system and its current state. We perform a linear stability analysis of uniform oscillations with respect to space-dependent perturbations and compare with numerical simulations. Similarly, for the fixed-point solution that corresponds to amplitude death in the spatially extended system, a linear stability analysis with respect to space-dependent perturbations is performed and complemented by numerical simulations. © 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Liposomes due to their biphasic characteristic and diversity in design, composition and construction, offer a dynamic and adaptable technology for enhancing drug solubility. Starting with equimolar egg-phosphatidylcholine (PC)/cholesterol liposomes, the influence of the liposomal composition and surface charge on the incorporation and retention of a model poorly water soluble drug, ibuprofen was investigated. Both the incorporation and the release of ibuprofen were influenced by the lipid composition of the multi-lamellar vesicles (MLV) with inclusion of the long alkyl chain lipid (dilignoceroyl phosphatidylcholine (C 24PC)) resulting in enhanced ibuprofen incorporation efficiency and retention. The cholesterol content of the liposome bilayer was also shown to influence ibuprofen incorporation with maximum ibuprofen incorporation efficiency achieved when 4 μmol of cholesterol was present in the MLV formulation. Addition of anionic lipid dicetylphosphate (DCP) reduced ibuprofen drug loading presumably due to electrostatic repulsive forces between the carboxyl group of ibuprofen and the anionic head-group of DCP. In contrast, the addition of 2 μmol of the cationic lipid stearylamine (SA) to the liposome formulation (PC:Chol - 16 μmol:4 μmol) increased ibuprofen incorporation efficiency by approximately 8%. However further increases of the SA content to 4 μmol and above reduced incorporation by almost 50% compared to liposome formulations excluding the cationic lipid. Environmental scanning electron microscopy (ESEM) was used to dynamically follow the changes in liposome morphology during dehydration to provide an alternative assay of liposome stability. ESEM analysis clearly demonstrated that ibuprofen incorporation improved the stability of PC:Chol liposomes as evidenced by an increased resistance to coalescence during dehydration. These finding suggest a positive interaction between amphiphilic ibuprofen molecules and the bilayer structure of the liposome. © 2004 Elsevier B.V. All rights reserved.