2 resultados para SOLAR-ACTIVITY
em Aston University Research Archive
Resumo:
The satellite ERS-1 was launched in July 1991 in a period of high solar activity. Sparse laser tracking and the failure of the experimental microwave system (PRARE) compounded the orbital errors which resulted from mismodelling of atmospheric density and hence surface forces. Three attempts are presented here to try and refine the coarse laser orbits of ERS-1, made prior to the availability of the full altimetric dataset. The results of the first attempt indicate that by geometrically modelling the satellite shape some improvement in orbital precision may be made for any satellite; especially one where no area tables already exist. The second and third refinement attempts are based on the introduction of data from some second satellite; in these examples SPOT-2 and TOPEX/Poseidon are employed. With SPOT-2 the method makes use of the orbital similarities to produce along-track corrections for the more fully tracked SPOT-2. Transferring these corrections to ERS-1 produces improvements in the precise orbits thus determined. With TOPEX/Poseidon the greater altitude results in a more precise orbit (gravity field and atmospheric errors are of less importance). Thus, by computing height differences at crossover points of the TOPEX/Poseidon and ERS-1 ground tracks the poorer orbit of ERS-1 may be improved by the addition of derived radial corrections. In the positive light of all three results several potential modification are suggested and some further avenues of investigation indicated.
Resumo:
Developing novel heterojunction photocatalysts is a powerful strategy for improving the separation efficiency of photogenerated charge carriers, which is attracting the intense research interest in photocatalysis. Herein we report a highly efficient hetero/nanojunction consisting of Ag2CO3 nanoparticles grown on layered g-C3N4 nanosheets synthesized via a facile and template free in situ precipitation method. The UV–vis diffuse reflectance studies revealed that the synthesized Ag2CO3/g-C3N4 hetero/nanojunctions exhibit a broader and stronger light absorption in the visible light region, which is highly beneficial for absorbing the visible light in the solar spectrum. The optimum photocatalytic activity of Ag2CO3/g-C3N4 at a weight content of 10% Ag2CO3 for the degradation of Rhodamine B was almost 5.5 and 4 times as high as that of the pure Ag2CO3 and g-C3N4, respectively. The enhanced photocatalytic activity of the Ag2CO3/g-C3N4 hetero/nanojunctions is due to synergistic effects including the strong visible light absorption, large specific surface area, and high charge transfer and separation efficiency. More importantly, the high photostability and low use of the noble metal silver which reduces the cost of the material. Therefore, the synthesized Ag2CO3/g-C3N4 hetero/nanojunction photocatalyst is a promising candidate for energy storage and environment protection applications.