30 resultados para SMOOTHING SPLINE

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements. © 2013 Paolo Bifulco et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of feed-forward neural networks in real applications can be often be improved significantly if use is made of a-priori information. For interpolation problems this prior knowledge frequently includes smoothness requirements on the network mapping, and can be imposed by the addition to the error function of suitable regularization terms. The new error function, however, now depends on the derivatives of the network mapping, and so the standard back-propagation algorithm cannot be applied. In this paper, we derive a computationally efficient learning algorithm, for a feed-forward network of arbitrary topology, which can be used to minimize the new error function. Networks having a single hidden layer, for which the learning algorithm simplifies, are treated as a special case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thrust of this report concerns spline theory and some of the background to spline theory and follows the development in (Wahba, 1991). We also review methods for determining hyper-parameters, such as the smoothing parameter, by Generalised Cross Validation. Splines have an advantage over Gaussian Process based procedures in that we can readily impose atmospherically sensible smoothness constraints and maintain computational efficiency. Vector splines enable us to penalise gradients of vorticity and divergence in wind fields. Two similar techniques are summarised and improvements based on robust error functions and restricted numbers of basis functions given. A final, brief discussion of the application of vector splines to the problem of scatterometer data assimilation highlights the problems of ambiguous solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. Flexible blocking strategies are introduced to further improve mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample, applications the algorithm is accurate except in the presence of large observation errors and low observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-uniform B-spline dictionaries on a compact interval are discussed in the context of sparse signal representation. For each given partition, dictionaries of B-spline functions for the corresponding spline space are built up by dividing the partition into subpartitions and joining together the bases for the concomitant subspaces. The resulting slightly redundant dictionaries are composed of B-spline functions of broader support than those corresponding to the B-spline basis for the identical space. Such dictionaries are meant to assist in the construction of adaptive sparse signal representation through a combination of stepwise optimal greedy techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infantile Nystagmus Syndrome, or Congenital Nystagmus, is an ocular-motor disorder characterized by involuntary, conjugated and bilateral to and fro ocular oscillations. Good visual acuity in congenital nystagmus can be achieved during the foveation periods in which eye velocity slows down while the target image crosses the fovea. Visual acuity was found to be mainly dependent on the duration of the foveation periods. In this work a new approach is proposed for estimation of foveation parameters: a cubic spline interpolation of the nystagmus recording before localizing the start point of foveation window and to estimate its duration. The performances of the proposed algorithm were assessed in comparison with a previously developed algorithm, used here as gold standard. The obtained results suggest that the spline interpolation could be a useful tool to filter the eye movement recordings before applying an algorithm to estimate the foveation window parameters. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that net equity payouts from the corporate sector play a crucial role in helping individuals manage their consumption path across the business cycle. In particular, we show that, as investors' desire to smooth consumption increases, optimal aggregate dividends become both more volatile and more counter-cyclical to help counterbalance pro-cyclical labor income. These findings are robust to whether or not agency conflicts exist in the economy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we develop set of novel Markov Chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. The novel diffusion bridge proposal derived from the variational approximation allows the use of a flexible blocking strategy that further improves mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample applications the algorithm is accurate except in the presence of large observation errors and low to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient. © 2011 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian ``ink generators'' spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages. (1) After identifying the model most likely to have generated the data, the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style. (2) During the process of explaining the image, generative models can perform recognition driven segmentation. (3) The method involves a relatively small number of parameters and hence training is relatively easy and fast. (4) Unlike many other recognition schemes it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is it requires much more computation than more standard OCR techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of regression under Gaussian assumptions is treated generally. The relationship between Bayesian prediction, regularization and smoothing is elucidated. The ideal regression is the posterior mean and its computation scales as O(n3), where n is the sample size. We show that the optimal m-dimensional linear model under a given prior is spanned by the first m eigenfunctions of a covariance operator, which is a trace-class operator. This is an infinite dimensional analogue of principal component analysis. The importance of Hilbert space methods to practical statistics is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectral and coherence methodologies are ubiquitous for the analysis of multiple time series. Partial coherence analysis may be used to try to determine graphical models for brain functional connectivity. The outcome of such an analysis may be considerably influenced by factors such as the degree of spectral smoothing, line and interference removal, matrix inversion stabilization and the suppression of effects caused by side-lobe leakage, the combination of results from different epochs and people, and multiple hypothesis testing. This paper examines each of these steps in turn and provides a possible path which produces relatively ‘clean’ connectivity plots. In particular we show how spectral matrix diagonal up-weighting can simultaneously stabilize spectral matrix inversion and reduce effects caused by side-lobe leakage, and use the stepdown multiple hypothesis test procedure to help formulate an interaction strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose - To provide a framework of accounting policy choice associated with the timing of adoption of the UK Statement of Standard Accounting Practice (SSAP) No. 20, "Foreign Currency Translation". The conceptual framework describes the accounting policy choices that firms face in a setting that is influenced by: their financial characteristics; the flexible foreign exchange rates; and the stock market response to accounting decisions. Design/methodology/approach - Following the positive accounting theory context, this paper puts into a framework the motives and choices of UK firms with regard to the adoption or deferment of the adoption of SSAP 20. The paper utilises the theoretical and empirical findings of previous studies to form and substantiate the conceptual framework. Given the UK foreign exchange setting, the framework identifies the initial stage: lack of regulation and flexibility in financial reporting; the intermediate stage: accounting policy choice; and the final stage: accounting choice and policy review. Findings - There are situations where accounting regulation contrasts with the needs and business objectives of firms and vice-versa. Thus, firms may delay the adoption up to the point where the increase in political costs can just be tolerated. Overall, the study infers that firms might have chosen to defer the adoption of SSAP 20 until they reach a certain corporate goal, or the adverse impact (if any) of the accounting change on firms' financial numbers is minimal. Thus, the determination of the timing of the adoption is a matter which is subject to the objectives of the managers in association with the market and economic conditions. The paper suggests that the flexibility in financial reporting, which may enhance the scope for income-smoothing, can be mitigated by the appropriate standardisation of accounting practice. Research limitations/implications - First, the study encompassed a period when firms and investors were less sophisticated users of financial information. Second, it is difficult to ascertain the decisions that firms would have taken, had the pound appreciated over the period of adoption and had the firms incurred translation losses rather than translation gains. Originality/value - This paper is useful to accounting standards setters, professional accountants, academics and investors. The study can give the accounting standard-setting bodies useful information when they prepare a change in the accounting regulation or set an appropriate date for the implementation of an accounting standard. The paper provides significant insight about the behaviour of firms and the associated impacts of financial markets and regulation on the decision-making process of firms. The framework aims to assist the market and other authorities to reduce information asymmetry and to reinforce the efficiency of the market. © Emerald Group Publishing Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prices and yields of UK government zero-coupon bonds are used to test alternative yield curve estimation models. Zero-coupon bonds permit a more pure comparison, as the models are providing only the interpolation service and also not making estimation feasible. It is found that better yield curves estimates are obtained by fitting to the yield curve directly rather than fitting first to the discount function. A simple procedure to set the smoothness of the fitted curves is developed, and a positive relationship between oversmoothness and the fitting error is identified. A cubic spline function fitted directly to the yield curve provides the best overall balance of fitting error and smoothness, both along the yield curve and within local maturity regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.