20 resultados para SEROTONERGIC INNERVATION
em Aston University Research Archive
Resumo:
Tic-like movements in rodents bear close similarities to those observed in humans both pharmacologically and morphologically. Pharmacologically, tics are modulated by serotonergic and dopaminergic systems and abnormalities of these systems have been reported in Tourette's Syndrome (TS). Therefore, serotonergic and dopaminergic modulation of tics induced by a thyrotrophin-releasing hormone (TRH) analogue were studied as possible models for TS. The TRH analogue MK771 induced a variety of tic like movements in mice; blinking fore-paw-licking and fore-paw-tremor were quantified and serotonergic and dopaminergic modulation was investigated. The selective dopamine D1 receptor antagonists SCH23390 and SCH39166 and dopamine D2 antagonists raclopride and sulpiride had no effect on MK771 induced blinking. The D1 antagonists attenuated fore-paw-tremor and -licking while the D2 antagonists were generally without effect on these behaviours. Ketanserin (5-HT2A/ alpha-1 antagonist) and ritanserin (5-HT2A/2C antagonist) were able to attenuate MK771-induced blinking and ketanserin, mianserin (5-HT2A/2C antagonist) and prazosin (alpha-1 adrenoceptor antagonist) were able to attenuate MK771-induced fore-paw-tremor and -licking. The 5-HT2C/2B antagonist SB200646A was without effect on blinking and fore-paw-licking but dose-dependently potentiated fore-paw-tremor. The 5-HT1A agonists 8-OH DPAT and buspirone attenuated blinking at the lower doses tested but were ineffective at the higher doses; the converse was found for fore-paw-licking and -tremor behaviours.The effects of these ligands appeared to be at a postsynaptic 5-HTlA site since para-chlorophenylalanine was without effect on the manipulation of these behaviours. (S)-W A Y100135 was without effect on MK771-induced behaviours, spontaneous and DOl-induced head shakes. Because kynurenine potentiates head shakes and plasma concentrations are raised in TS patients the effects of kynurenine on the 5-HT2A/2C agonist DOl mediated head shake were established. Kynurenine potentiated the DOl head shake. Attempts were made to correlate serotonergic unit activity with tic like behaviour in cats but this proved unsuccessful. However, the pharmacological understanding of 5-HTlA receptor function has been hampered because of the lack of selective antagonists for this site. For this reason the effects of the novel 5-HTlA antagonists (S)-WA Y- 100135 and WAY -100635 were tested on 5-HT single-unit activity recorded from the dorsal-raphe-nucleus in the behaving cat. Both drugs antagonised the suppression of unit activity caused by 8-0H DPAT. (S)-WA Y-100135 reduced unit activity whereas WAY-100635 increased it. This suggests that WAY-100635 is acting as an antagonist at the 5-HTlA somatodendritic autoreceptor and that (S)W A Y -100135 acts as a partial agonist at this site. Aspects of tic like behaviour and serotonergic control are discussed.
Resumo:
A study has been made of drugs acting at 5-HT receptors on animal models of anxiety. An elevated X-maze was used as a model of anxiety for rats and the actions of various ligands for the 5-HT receptor, and its subtypes, were examined in this model. 5-HT agonists, with varying affinities for the 5-HT receptor subtypes, were demonstrated to have anxiogenic-like activity. The 5-HT2 receptor antagonists ritanserin and ketanserin exhibited an anxiolytic-like profile. The new putatuve anxiolytics ipsapirone and buspirone, which are believed to be selective for 5-HT1 receptors, were also examined. The former had an anxiolytic profile whilst the latter was without effect. Antagonism studies showed the anxiogenic response to 8-hydroxy-2-(Di-n-propylamino)tetralin (8-OH-DPAT) to be antagonised by ipsapirone, pindolol, alprenolol and para-chlorophenylalanine, but not by diazepam, ritanserin, metoprolol, ICI118,551 or buspirone. To confirm some of the results obtained in the elevated X-maze the Social Interaction Test of anxiety was used. Results in this test mirrored the effects seen with the 5-HT agonists, ipsapirone and pindolol, whilst the 5-HT2 receptor antagonists were without effect. Studies using operant conflict models of anxiety produced marginal and varying results which appear to be in agreement with recent criticisms of such models. Finally, lesions of the dorsal raphe nucleus (DRN) were performed in order to investigate the mechanisms involved in the production of the anxiogenic response to 8-OH-DPAT. Overall the results lend support to the involvement of 5-HT, and more precisely 5-HT1, receptors in the manifestation of anxiety in such animal models.
Resumo:
The modulation of 5-hydroxytryptamine (5-HT)-related head-twitchbehaviour by antimigraine drugs and migraine triggers was examined inmice. The antimigraine drugs examined produced either inhibition or noeffect on 5-HT-related head-twitching. On the basis of these resultsit is suggested that 5-HT-related head-twitching is unlikely to beuseful in the preclinical screening and discovery of systemically-activeantimigraine agents. The migraine triggers examined, tyramineand beta-PEA initially produced a repeatable complex time-relatedeffect on 5-HT-related head-twitching, with both inhibition andpotentiation of this behaviour being observed, however, when furtherexamination of the effect of the migraine triggers on 5-HT-relatedhead-twitching was attempted some time later the effects seeninitially were no longer produced. The effect of (±)-1-<2, 5-dimethoxy-4-iodophenyl)-2-aminopropane,((±)DOl), on on-going behaviour of mice and rats was examined. Shakingbehaviour was observed in both species. In mice, excessive scratchingbehaviour was also present. (±)DOl-induced scratching and shakingbehaviour were found to be differentially modulated by noradrenergicand serotonergic agents, however, the fact that both behaviours wereblocked by ritanserin (5-HT2/5-HT1c receptor antagonist) and inhibitedby FLA-63 (a dopamine-beta-oxidase inhibitor which depletesnoradrenaline), suggests the pathways mediating these behaviours mustbe convergent in some manner, and that both behaviours require intact5-HT receptors, probably 5-HT2 receptors, for their production. Ingeneral, the behavioural profile of (±)DOI was as expected for anagent which exhibits high affinity binding to 5-HT2/5-HT1c receptors.Little sign of the 5-HTl-related '5-HT syndrome' was seen in eithermice or rats. The effect of a variety of noradrenergic agents on head-twitchinginduced by a variety of shake-inducing agents was examined. A patternof modulatory effect was seen whereby the modulatory effect of thenoradrenergic agents on 5-hydroxytryptophan <5-HTP) (and in some cases, 5-methoxy-N,N-dimethyltryptamine (5-MeODMT)) was found to be the opposite of that observed with quipazine and (±)DOI. The relationship between these effects, and their implications for understanding the pharmacology of centrally acting drugs is discussed.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Purpose: Evidence exists for an additional inhibitory accommodative control system mediated by the sympathetic branch of the autonomic nervous system (ANS). This work aims to show the relative prevalence of sympathetic inhibition in young emmetropic and myopic adults, and to evaluate the effect of sympathetic facility on accommodative and oculomotor function. Methods: Profiling of ciliary muscle innervation was carried out in 58 young adult subjects (30 emmetropes, 14 early onset myopes, 14 late onset myopes) by examining post-task open-loop accommodation responses, recorded continuously by a modified open-view infrared optometer. Measurements of amplitude of accommodation, tonic accommodation, accommodative lag at near, AC/A ratio, and heterophoria at distance and near were made to establish a profile of oculomotor function. Results: Evidence of sympathetic inhibitory facility in ciliary smooth muscle was observed in 27% of emmetropes, 21% of early-onset myopes and 29% of late-onset myopes. Twenty-six percent of all subjects demonstrated access to sympathetic facility. Closed-loop oculomotor function did not differ significantly between subjects with sympathetic facility, and those with sympathetic deficit. Conclusions: Emmetropic and myopic groups cannot be distinguished in terms of the relative proportions having access to sympathetic inhibition. Presence of sympathetic innervation does not have a significant effect on accommodative function under closed-loop viewing conditions. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Objectives Ecstasy is a recreational drug whose active ingredient, 3,4-methylenedioxymethamphetamine (MDMA), acts predominantly on the serotonergic system. Although MDMA is known to be neurotoxic in animals, the long-term effects of recreational Ecstasy use in humans remain controversial but one commonly reported consequence is mild cognitive impairment particularly affecting verbal episodic memory. Although event-related potentials (ERPs) have made significant contributions to our understanding of human memory processes, until now they have not been applied to study the long-term effects of Ecstasy. The aim of this study was to examine the effects of past Ecstasy use on recognition memory for both verbal and non-verbal stimuli using ERPs. Methods We compared the ERPs of 15 Ecstasy/polydrug users with those of 14 cannabis users and 13 non-illicit drug users as controls. Results Despite equivalent memory performance, Ecstasy/polydrug users showed an attenuated late positivity over left parietal scalp sites, a component associated with the specific memory process of recollection. Conlusions This effect was only found in the word recognition task which is consistent with evidence that left hemisphere cognitive functions are disproportionately affected by Ecstasy, probably because the serotonergic system is laterally asymmetrical. Experimentally, decreasing central serotonergic activity through acute tryptophan depletion also selectively impairs recollection, and this too suggests the importance of the serotonergic system. Overall, our results suggest that Ecstasy users, who also use a wide range of other drugs, show a durable abnormality in a specific ERP component thought to be associated with recollection.
Resumo:
The rectum has a unique physiological role as a sensory organ and differs in its afferent innervation from other gut organs that do not normally mediate conscious sensation. We compared the central processing of human esophageal, duodenal, and rectal sensation using cortical evoked potentials (CEP) in 10 healthy volunteers (age range 21-34 yr). Esophageal and duodenal CEP had similar morphology in all subjects, whereas rectal CEP had two different but reproducible morphologies. The rectal CEP latency to the first component P1 (69 ms) was shorter than both duodenal (123 ms; P = 0.008) and esophageal CEP latencies (106 ms; P = 0.004). The duodenal CEP amplitude of the P1-N1 component (5.0 µV) was smaller than that of the corresponding esophageal component (5.7 µV; P = 0.04) but similar to that of the corresponding rectal component (6.5 µV; P = 0.25). This suggests that rectal sensation is either mediated by faster-conducting afferent pathways or that there is a difference in the orientation or volume of cortical neurons representing the different gut organs. In conclusion, the physiological and anatomic differences between gut organs are reflected in differences in the characteristics of their afferent pathways and cortical processing.
Resumo:
Purpose: Pharmacological intervention with peripheral sympathetic transmission at ciliary smooth muscle neuro-receptor junctions has been used against a background of controlled parasympathetic activity to investigate the characteristics of autonomic control of ocular accommodation. Methods: A continuously recording infrared optometer was used to measure accommodation on a group of five visually normal emmetropic subjects under open- and closed-loop conditions. A double-blind protocol between saline, timolol and betaxolol was used to differentiate between the localised action on ciliary smooth muscle and effects induced by changes in stimulus conditions. Data were collected before and 45 min following the instillation of saline, timolol or betaxolol. Open-loop post-task decay was investigated following 3 min sustained near fixation of a stimulus placed 3 D above the subject's pre-task tonic accommodation level. Closed-loop dynamic responses were recorded for each treatment condition while subjects viewed sinusoidally (0.05-0.6 Hz) or stepwise vergence-modulated targets over a 2 D range (2-4 D). Results: Open-loop data demonstrate a rapid post-task regression to pre-task tonic accommodation levels for saline and betaxolol control conditions. A slow positive post-task shift was induced by timolol indicating that sympathetic inhibition contributes to accommodative adaptation during sustained near vision. Closed-loop accommodation responses to temporally modulated sinusoidal stimuli showed characteristic features for both saline and betaxolol control conditions. Timolol induced a reduced gain for low- and mid-temporal frequencies (< 0.3 Hz) but did not affect the response at higher temporal frequencies. Response times to stepwise stimuli increased following the instillation of timolol for the near-to-far fixation condition compared with the controls and was related to the period of sustained prior fixation. Conclusions: Modulation of accommodation under open- and closed-loop conditions by a non-selective β-blocker is consistent with the temporal and inhibitory features of sympathetic innervation to ciliary smooth muscle. Although parasympathetic innervation predominates there is evidence to support a role for sympathetic innervation in the control of ocular accommodation. © 2002 The College of Optometrists.
Resumo:
The results of an investigation into how stressors interact with the action of serotonergic agents in animal models of anxiety are presented. Water deprivation and restraint both increased plasma corticosterone concentrations and elevated 5-HT turnover. In the elevated X-maze, water deprivation had a duration-dependent "anxiolytic" effect. The effect of restraint was dependent on the duration of restraint and was to inhibit maze exploration. Water-deprivation did not influence the action of diazepam or any 5-HT1A ligand in the X-maze. Restraint switched the "anxiogenic" effect of 8-0H-DPAT to either "anxiolytic" or inactive, depending on the time after the restraint when testing was performed. The Vogel conflict test detected an "anxiolytic" "anxiolytic"V"anxiolytic""anxiolytic" effect of buspirone which was additive with "anxiolytic" effects of pindolol and propranolol. Diazepam and fluoxetine were also active, but 8-0H-DPAT, ipsapirone, gepirone and yohimbine were inactive. In the elevated X-maze, "anxiogenic" responses to picrotoxin, flumazenil, RU 24969, CGS 12066B, fluoxetine and 8-0H-DPAT were detected. Other 5-HT1A ligands were inactive. Diazepam and corticosterone had "anxiolytic" effects. Increasing light intensity did not change behaviour on the elevated X-maze, but was able to reverse the effect of 8- OH-DPAT to an "anxiolytic" action. This effect was attributed to a presynaptic mechanism, because it was abolished by pCPA. The occurence of different behaviours in different reglons of the maze was shown to be susceptible to modulation by "anxiolytic" and "anxiogenic" drugs. These results are discussed in the context of there being at least two separate 5-HT mechanisms which are involved in the control of anxiety.
Resumo:
The principal work reported in this thesis is the examination of autonomic profile of ciliary muscle innervation as a risk factor in myopia development. Deficiency in sympathetic inhibitory control of accommodation has been proposed as a contributory factor in the development of late onset myopia (LOM). Complementary measurements of ocular biometry, oculomotor function and dynamic accommodation response were carried out on the same subject cohort, thus allowing cross-correlation of these factors with. autonomic profile. Subjects were undergraduate and postgraduate students of Aston University. A 2.5 year longitudinal study of refractive error progression in 40 subjects revealed the onset of LOM in 10, initially emmetropic, young adult subjects (age range 18-24 years) undertaking substantial amounts of near work. A controlled, double blind experimental protocol was conducted concurrently to measure post-task open-loop accommodative regression following distance (0 D) or near (3 D above baseline tonic accommodation) closed-loop tasks of short (10 second) or long (3 minute) duration. Closed-loop tasks consisted of observation of a high contrast Maltese cross target; open-loop conditions were imposed by observation of a 0.2 c/deg Difference of Gaussian target. Accommodation responses were recorded continuously at 42 Hz using a modified Shin-Nippon SRW-5000 open-view infra-red optometer. Blockade of the sympathetic branch of accommodative control was achieved by topical instillation of the non-selective b-adrenoceptor antagonist timolol maleate. Betaxolol hydrochloride (non-selective b1-adrenoceptor antagonist) and normal saline were employed as control agents. Retarded open-loop accommodative regression under b2 blockade following the 3 minute near task indicated the presence of sympathetic facility. Sympathetic inhibitory facility in accommodation control was found in similar proportions between LOM and stable emmetropic subjects. A cross-sectional study (N=60) of autonomic profile showed that sympathetic innervation of ciliary muscle is present in similar proportions between emmetropes, early-, and late-onset myopes. Sympathetic facility was identified in 27% of emmetropes, 21% of EOMs and 29% of LOMs.
Resumo:
The binding issue of th is thesis was the examination of workload, induced by relinotopic and spatiotopic stimuli, on both the ocu lomotor and cardiovascular systems together with investigating the covariation between the two systems - the 'eye-heart' link. Further, the influence of refractive error on ocular accommodation and cardiovascular function was assessed. A clinical evaluation was undertaken to assess the newly available open-view infrared Shin-Nippon NVision-K 5001 optometer, its benefit being the capability to measure through pupils = 2.3 mm. Measurements of refractive error taken with the NVision-K were found to be both accurate (Difference in Mean Spherical Equivalent: 0.14 ± 0.35 D; p = 0.67) and repeatable when compared to non-cycloplegic subjective refraction. Due to technical difficulties, however, the NVision-K could not be used for the purpose of the thesis, as such, measures of accommodation were taken using the continuously recording Shin-Nippon SRW-5000 openview infrared optometer, coupled with a piezo-electric finger pulse transducer to measure pulse. Heart rate variability (HRV) was spectrally analysed to determine the systemic sympathetic and parasympathetic components of the autonomic nervous system (ANS). A large sample (n = 60), cross-sectional study showed late-onset myopes (LOMs) display less accurate responses when compared to other refractive groups at high accommodative demand levels (3 .0 0 and 4.0D). Tonic accommodation (TA) was highest in the hypermetropes, fo llowed by emmetropes and early-onset myopes while the LOM subjects demonstrated statistically significant lower levels of TA. The root-meansquare (RMS) value of the accommodative response was shown to amplify with increased levels of accommodative demand. Changes in refractive error only became significant between groups at higher demand levels (3.0 D and 4.0 D) with the LOMs showing the largest magnification in oscilIations. Examination of the stimulus-response cross-over point with the unit ratio line and TA showed a correlation between the two (r = 0.45, p = 0.001), where TA is approximately twice the dioptric value of the stimulus-response cross-over point. Investigation of the relationship between ocular accommodation and systemic ANS function demonstrated covariation between the systems. Subjects with a faster heart rate (lower heart period) tended to have a higher TA value (r = -0.27, p < 0.05). Further, an increase in accommodative demand accompanies a faster heart rate. The influence of refractive error on the cardiovascular response to changes in accommodative demand, however, was equivocal. Examination of the microfluctuations ofacconunodation demonstrated a correlation between the temporal frequency location of the accommodative high Frequency component (HFC) and the arterial pulse frequency. The correlation was present at a range of accommodative demands from 0.0 D to 4.0 D and in all four refractive groups, suggesting that the HFC was augmented by physiological factors. Examination of the effect of visual cognition on ocular accommodation and the ANS confirmed that increasing levels of cognition affect the accommodative mechanism. The accommodative response shifted away from the subject at both near and far. This shift in accommodative response accompanied a decay in the systemic parasympathetic innervation to the heart. Differences between refractive groups also existed with LOMs showing less accurate responses compared to emmetropes. This disparity, however, appeared to be augmented by the systemic sympathetic nervous system. The investigations discussed explored Ihe role of oculomotor and cardiovascular fu nction in workload enviromnents, providing evidence for a behavioural link between the cardiovascular and oculomotor systems.
Resumo:
In this thesis a modified Canon IR optometer was used to record static and continuous responses of accommodation during sustained visual tasks. The instrument was assessed with regard to the ocular exit pupil used, its frequency response and noise levels. Experimental work concerned essentially the temporal characteristics and neurological basis of the accommodative mechanism. In the absence of visual stimuli, the accommodative system assumes a resting or tonic accommodative (TA) position, which may be modified by periods of sustained fixation. The rate of regression from a near task to TA in darkness has exhibited differences between regression rates for enunetropes (EMMs) compared with late-onset myopes (WMs). The rate of accommodative regression from a task set at 3D above TA was examined for a group of 10 EMMs and 10 LOMs for 3 conditions: saline, timolol and betaxolol. Timolol retarded the regression to TA for a sub-group of EMMs. The patterns of regression for the remaining emmetropes mirrored that for the LOMs, the drugs showing no difference in rate of regression compared with the saline condition. This provides support for the conjecture that LOMs and certain EMMs appear to be deficient in a sympathetic inhibitory component to the ciliary muscle which may attenuate adaptational changes in tonus and which leave them susceptible to the development of LOM. It is well established that the steady-state accommodative response is characterised by temporal changes in lens power having 2 dominant frequency components: a low frequency component (LFC: < 0.6Hz) and a high frequency component (HFC: 1.0-2.2Hz). This thesis investigates various aspects of these microfluctuations of accommodation.The HFC of accommodative fluctuations was shown to be present in central and peripheral lens zones, although the magnitude of the rms of accommodative microfluctuations was found to be reduced in the lens periphery. These findings concur with the proposal that the lens capsule acts as a force distributor, transmitting the tension from the zonules evenly over the whole of the lens surface.An investigation into the correlation between arterial pulse and the HFC of accommodative fluctuations showed that the peak frequency of the HFC was governed by the arterial pulse frequency. It was proposed that the microflucutations comprised a combination of neurological control (LFC) and physiological variations (HFC).The effect of timolol maleate on the steady-state accommodative response for a group of 10 emmetropes showed that timolol reduced significantly the rms of accommodative microfluctuations in treated but not untreated eyes. Consequently, the effect was considered to be locally, rather than systemically induced.The influence of the sympathetic system on within-task measurements of accommodation was examined by recording the accommodative response of 3 subjects to a sinusoidally moving target at 6 temporal frequencies from 0.05Hz to 0.5Hz for 3 drug conditions: saline, timolol and betaxolol. Timolol caused a reduced gain for frequencies below 0.3 whereas betaxolol reduced accommodative gain for all frequencies. It was proposed that the results for timolol were consistent with temporal response characteristics of sympathetic innervation of the ciliary muscle whereas the betaxolol results were thought to be a manifestation of fatigue resulting from the CNS depressant effect of the drug.
Resumo:
It is well established that a synkinetic relationship exists between the accommodation and vergence components of the oculomotor near response such that increased accommodation will initiate a vergence response (i.e. accommodative convergence) and conversely increased vergence will drive accommodation (i.e. convergent accommodation) . The synkinesis associated with sustained near-vision was examined in a student population consisting of emmetropes, late-onset myopes (LOMs) i.e. myopia onset at 15 years of age or later and early-onset myopes (EOMs) i.e. myopia onset prior to 15 years of age. Oculomotor synkinesis was investigated both under closed-loop conditions and with either accommodation or vergence open-loop. Objective measures of the accommodative response were made using an infra-red optometer. Differences in near-response characteristics were observed between LOMs and EOMs under both open- and closed-loop conditions. LOMs exhibit significantly higher levels of disparity-induced accommodation (accommodation driven by vergence under closed-loop conditions) and lower response accommodative convergence/accommodation (AC/A) ratios when compared with EOMs. However no difference in convergent accommodation/convergence (CA/C) ratios were found between the three refractive groups. Accommodative adaptation was examined by comparing the pre- to post-task shift in dark focus (DF) following near-vision tasks. Accommodative adaptation was observed following tasks as brief as 15s. Following a 45s near-vision task, subjects having pre-task DF greater than +0.750 exhibited a marked negative shift in post-task DF which was shown to be induced by beta-adrenergic innervation to the ciliary muscle. However no evidence was found to support the proposal of reduced adrenergic innervation to the ciliary muscle in LOMs. Disparity-vergence produced a reduction in accommodative adaptation suggesting that oculomotor adaptation was not driven by the output of the near-response crosslinks. In order to verify this proposition, the effect of vergence adaptation on CA/C was investigated and it was observed that prism adaptation produced no significant change in the CA/C ratio. This would indicate that in a model of accommodation-vergence interaction, the near response cross-links occur after the input to the adaptive components of the oculomotor response rather than before the adaptive elements as reported in previous literature. The findings of this thesis indicate differences in the relative composition of the aggregate accommodation and vergence responses in the three refractive groups examined. They may also have implications with regard to the aetiology of late-onset myopia.
Resumo:
A large negative spike potential, which is closely related to the onset of saccadic eyemovements, can be recorded from electrodes adjacent to the orbits. This potential, thepresaccadic spike potential, has often been regarded as an artefact related to eyemovement recordings and little work has been performed to establish its normal waveformand parameters. A positive spike potential, exactly coincident with the frontal negativespike, has also been recorded from electrodes positioned over the posterior scalp andthere has been some debate regarding any possible relationship between the twopotentials. The frontal spike potential has been associated with motor unit activity in theextraocular muscles prior to the saccade. This thesis investigates both the large anteriorand smaller posterior spike potentials and relates these recordings to the saccadic eyemovements associated with them. The anterior spike potential has been recorded from normal subjects to ascertain its normallatency and amplitude parameters for both horizontal and vertical saccades. A relationshipbetween saccade size and spike potential amplitude is described, the spike potentialamplitude reducing with smaller saccades. The potential amplitude also reduces withadvancing age. Studying the topographical distribution of the spike potential across thescalp shows the posterior spike activity may arise from potential spread of the larger frontalspike potential. Spike potential recordings from subjects with anomalous eye movements further implicate the extraocular muscles and their innervation in the generation of the spike potential. These recordings indicate that the spike potential may have some use as a clinical recording from patients with disease conditions affecting either their extraocular muscles or the innervational pathways to these muscles. Further recordings of the potential are necessary, however, to determine the exact nature of the changes which may occur with such conditions.
Resumo:
In the absence of adequate visual stimulation accommodation adopts an intermediate resting position, appropriately termed tonic accommodation (TA). A period of sustained fixation can modify the tonic resting position, and indicate the adaptation properties of TA. This thesis investigates various factors contributing to the accommodative response during sustained visual tasks, in particular the adaptation of TA. Objective infra-red optometry was chosen as the most effective method of measurement of accommodation. This technique was compared with other methods of measuring TA and the results found to be well correlated. The inhibitory sympathetic input to the ciliary muscle provides the facility to attenuate the magnitude and duration of adaptive changes in TA. This facility is, however, restricted to those individuals having relatively high levels of pre-task TA. Furthermore, the facility is augmented by substantial levels of concurrent parasympathetic activity. The imposition of mental effort can induce concurrent changes in TA which are predominantly positive and largely the result of an increase in parasympathetic innervation of the ciliary muscle although there is some evidence for sympathetic attentuation at higher levels of TA. In emmetropes sympathetic inhibition can modify the effect of mental effort on the steady-state accommodative response at near. Late-onset myopes (onset after the age of 15 years) have significantlylower values of TA then emmetropes. Similarly, late-onset myopes show lower values of steady-state accommodative response for nearstimuli. The imposition of mental effort induces concurrent increases in TA and steady-state accommodative response in the myopic group which are significantly greater than those for emmetropes. Estimates of TA made under bright empty-field conditions are well correlated with those made under darkroom conditions. The method by which the accommodative loop is opened has no significant effect on the magnitude and duration of post-task shifts in TA induced by a near vision task. Significant differences in the post-task shifts in TA induced by a near vision task exist between emmetropes and late-onset myopes, the post-task shifts being more sustained for the myopic group.