4 resultados para SACs

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The action of bradykinin on transepithelial transfer of sodium and water in isolated rat jejunum and on smooth muscle contraction of rat terminal ileum has been investigated. (1) Bradykinin was shown to stimulate transfer at low control transfer, inhibit transfer at high control transfer and have no effect at intermediate transfer in rat jejunal sacs. Stimulation of transfer occurred only when bradykinin was in the serosal solutiun while inhibition of transfer occurred whether bradykinin was in the aerosal or mucosal solution. Bradykinin-induced stimulation of transfer was not affected by adrenalectomy, nephrectomy, combined adrenalectomy-nephrectomy,  nor maintenance on 1% saline drinking solution or low sodium diet pretreatment. Meclofenamic acid abolished the bradykinin-induced inhibition of water transfer while prostaglandins A1, E1 aud F2α all potentiated this action. Theophylline inhibited water transfer and potentiated the bradykinin-induced inhibition of water transfer. Cyclic AMP and dibutyryl cyclic AMP both inhibited water transfer and the bradykinin-induced inhibition of water transfer was potentiated by the latter. ( 2 ) Bradykinin-induced contractions of rat terminal ileum were little affected by hyoscine while those of acetylcholine were abolished. Anoxia reduced markedly responses tv bradykinin while those of acetylcholine were little affected . Theophylline reduced the responses of rat terminal ileum to bradykinin significantly more than those to acetylcholine. Aspirin and indomethacin reduced markedly the responses to bradykinin while not affecting those to acetylcholine and PGT2. Meslofenamic acid at a concentration of 3.4 µM blocked bradykinin-induced contractions but had no effect on those to acctylcholine, PGE2 or PGF2 and at a concentration of 17. 0 µM drastically reduced bradykinin responses but also reduced those to acetylcholine, PGE2 and PGF2α• Flufenamic acid drastically reduced responses to bradykinin while not affecting those to acetylcholine and PGE2 and slightly affecting those to PGF2α. Polyphloretin phosphate reduced responses to bradykinin, PGF2α and PGE2 but not acetylcholine . Diphloretin phosphate reduced responses to bradykinin, PGF2 and PGE2 in a dose dependent manner but not those to acetylcholine. SC 19220 , in a dose dependent manner, inhibited responses to bradykinin and PGE2 but not to acetylcholine and PGF2. 7 oxa - 13 -prostynoic acid non specifically reduced responses to acetylcholine, bradykinin and PGE2. Bradykinin, in the presence of SQ 20881 , increased the release of prostaglandin-like activity from rat terminal ileum and this was reduced or abolished in the presence of indomethacin, aspirin, meclofenamic acid or flufenamio acid. The extract of PG-like activity did not appear as PGE, PGA or PGFon TLC, but included a substance with similar mobility as 15-Keto-prosta-glandin E2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Noradrenaline was found to significantly stimulate fluid and Na absorption across everted sacs of rat jejunum. Of a number of a1, and 2-adrenoceptor antagonists tested only prazosin significantly inhibited the stimulant effect of noradrenaline and further experiments revealed an antiabsorptive effect of prazosin alone. Theophylline reduced jejunal fluid and Na absorption and this effect was not reversed by 2-adrenoceptor stimulation in contrast to previous findings in vivo. Evidence suggests the everted sac preparation is not appropriate to the study of intestinal fluid and electrolyte transport. The investigation of Jejunal ion transport in vitro was continued using an Ussing chamber preparation. Selective 2-adrenoceptor stimulation was found to depress electrogenic anion secretion, as neurotoxin tetrodotoxin indicated that this was a direct epithelial effect. 2-adrenoceptor agonists have considerable therapeutic value as antisecretory agents and the model of rat jejunum in vitro represents a convenient experimental model for research in this area. The selective 2-adrenoceptor antagonist ICI 118551 decreased basal SCC and inhibited increases in SCC in response to isoprenaline or salbutamol indicating the presence of a 2-adrenoceptor mechanism mediating both secretory tone and increases in secretory processes. Many intestinal secretagogues elicit electrolyte secretion via the stimulation of intramural secretory nervous pathways. If these pathways involve the activation of 2-adrenoceptorsthe 2-adrenoceptor antagonists may be useful in the treatment of diarrhoeal diseases. A single pass lumen perfusion technique was used to investigate possible sympathetic tone over colonic fluid and electrolyte absorption in the rat colon in vivo. The technique employed appeared to lack the necessary resolution for this study and alternative approaches are discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of sane anabolic and naturally-occuring sex steroids on intestinal transport of leucine have been studied in rainbow trout (Sallno gairdneri), in vivo (gut perfusion), and in vitro (everted gut sacs or intestinal strips). Administration of 17a-methyltestosterone (Mr) by injection for a prolo03ed period of time, enhanced intestinal transport and accumulation of leucine. 11-ketotestosterone (KT) or MT treatment in vitro, by direct addition to incubation media, elicited significant short-term increases in active transport of leucine, without effecting intestinal accumulation. Luminal administration of Mr in vivo similarly elicited short-term responses, without effecting leucine accumulation in the intestine or other peripheral tissues. However; neither MT nor KT significantly affected intestinal transport of water in trout. Although long term injection of oestradiol (E2) enhanced intestinal transport and accumulation of leucine, E2 treatment in vitro was without effect. Addition of ouabain or 2,4,dinitrophenol in the presence of MT abolished steroid-stimulated leucine transform, in vitro. No significant differences were observed between immature male or female trout with respect to either transport of leucine and water, or intestinal granular cell density. However, 'apparent' Na+ absorption and percentage fold height were higher in females, while total intestinal thickness and enterocyte heights were greater in males. These sex differences were essentially abolished. after gonadectany. It is suggested that the short-term effects of the androgenic steroids might be partly mediated through increased activity of Na+,K+,ATPase, and that steroid-induced growth promotion in fish may,to sane extent, be a consequence of enhanced efficiency of intestinal function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) mediate membrane interactions and are conventionally divided into Q-SNAREs and R-SNAREs according to the possession of a glutamine or arginine residue at the core of their SNARE domain. Here, we describe a set of R-SNAREs from the ciliate Paramecium tetraurelia consisting of seven families encoded by 12 genes that are expressed simultaneously. The complexity of the endomembrane system in Paramecium can explain this high number of genes. All P. tetraurelia synaptobrevins (PtSybs) possess a SNARE domain and show homology to the Longin family of R-SNAREs such as Ykt6, Sec22 and tetanus toxin-insensitive VAMP (TI-VAMP). We localized four exemplary PtSyb subfamilies with GFP constructs and antibodies on the light and electron microscopic level. PtSyb1-1, PtSyb1-2 and PtSyb3-1 were found in the endoplasmic reticulum, whereas PtSyb2 is localized exclusively in the contractile vacuole complex. PtSyb6 was found cytosolic but also resides in regularly arranged structures at the cell cortex (parasomal sacs), the cytoproct and oral apparatus, probably representing endocytotic compartments. With gene silencing, we showed that the R-SNARE of the contractile vacuole complex, PtSyb2, functions to maintain structural integrity as well as functionality of the osmoregulatory system but also affects cell division.