11 resultados para SACCHAROMYCES
em Aston University Research Archive
Resumo:
BACKGROUND: We previously described the first respiratory Saccharomyces cerevisiae strain, KOY.TM6*P, by integrating the gene encoding a chimeric hexose transporter, Tm6*, into the genome of an hxt null yeast. Subsequently we transferred this respiratory phenotype in the presence of up to 50 g/L glucose to a yeast strain, V5 hxt1-7Delta, in which only HXT1-7 had been deleted. In this study, we compared the transcriptome of the resultant strain, V5.TM6*P, with that of its wild-type parent, V5, at different glucose concentrations. RESULTS: cDNA array analyses revealed that alterations in gene expression that occur when transitioning from a respiro-fermentative (V5) to a respiratory (V5.TM6*P) strain, are very similar to those in cells undergoing a diauxic shift. We also undertook an analysis of transcription factor binding sites in our dataset by examining previously-published biological data for Hap4 (in complex with Hap2, 3, 5), Cat8 and Mig1, and used this in combination with verified binding consensus sequences to identify genes likely to be regulated by one or more of these. Of the induced genes in our dataset, 77% had binding sites for the Hap complex, with 72% having at least two. In addition, 13% were found to have a binding site for Cat8 and 21% had a binding site for Mig1. Unexpectedly, both the up- and down-regulation of many of the genes in our dataset had a clear glucose dependence in the parent V5 strain that was not present in V5.TM6*P. This indicates that the relief of glucose repression is already operable at much higher glucose concentrations than is widely accepted and suggests that glucose sensing might occur inside the cell. CONCLUSION: Our dataset gives a remarkably complete view of the involvement of genes in the TCA cycle, glyoxylate cycle and respiratory chain in the expression of the phenotype of V5.TM6*P. Furthermore, 88% of the transcriptional response of the induced genes in our dataset can be related to the potential activities of just three proteins: Hap4, Cat8 and Mig1. Overall, our data support genetic remodelling in V5.TM6*P consistent with a respiratory metabolism which is insensitive to external glucose concentrations.
Resumo:
In this study the yeast Saccharomyces cerevisiae, which is a genetically tractable model for analysis of osmoregulation, has been used for analysis of heterologous aquaporins. Aquaporin water channels play important roles in the control of water homeostasis in individual cells and multicellular organisms. We have investigated the effects of functional expression of the mammalian aquaporins AQP1 and AQP5 and the aquaglyceroporins AQP3 and AQP9. Expression of aquaporins caused moderate growth inhibition under hyperosmotic stress, while expression of aquaglyceroporins mediated strong growth inhibition due to glycerol loss. Water transport was monitored in protoplasts, where the kinetics of bursting was influenced by presence of aquaporins but not aquaglyceroporins. We observed glycerol transport through aquaglyceroporins, but not aquaporins, in a yeast strain deficient in glycerol production, whose growth depends on glycerol inflow. In addition, a gene reporter assay allowed to indirectly monitor the effect of AQP9-mediated enhanced glycerol loss on osmoadaptation. Transport activity of certain aqua(glycero)porins was diminished by low pH or CuSO 4, suggesting that yeast can potentially be used for screening of putative aquaporin inhibitors. We conclude that yeast is a versatile system for functional studies of aquaporins, and it can be developed to screen for compounds of potential pharmacological use. © Springer-Verlag 2006.
Resumo:
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which lias distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.
Resumo:
The biochemistry of most metabolic pathways is conserved from bacteria to humans, although the control mechanisms are adapted to the needs of each cell type. Oxygen depletion commonly controls the switch from respiration to fermentation. However, Saccharomyces cerevisiae also controls that switch in response to the external glucose level. We have generated an S. cerevisiae strain in which glucose uptake is dependent on a chimeric hexose transporter mediating reduced sugar uptake. This strain shows a fully respiratory metabolism also at high glucose levels as seen for aerobic organisms, and switches to fermentation only when oxygen is lacking. These observations illustrate that manipulating a single step can alter the mode of metabolism. The novel yeast strain is an excellent tool to study the mechanisms underlying glucose-induced signal transduction. © 2004 European Molecular Biology Organization.
Resumo:
Eukaryotic translation elongation factor 3 (eEF3) is a fungal-specific ATPase proposed to catalyze the release of deacylated-tRNA from the ribosomal E-site. In addition, it has been shown to interact with the aminoacyl-tRNA binding GTPase elongation factor 1A (eEF1A), perhaps linking the E and A sites. Domain mapping demonstrates that amino acids 775-980 contain the eEF1A binding sites. Domain III of eEF1A, which is also involved in actin-related functions, is the site of eEF3 binding. The binding of eEF3 to eEF1A is enhanced by ADP, indicating the interaction is favored post-ATP hydrolysis but is not dependent on the eEF1A-bound nucleotide. A temperature-sensitive P915L mutant in the eEF1A binding site of eEF3 has reduced ATPase activity and affinity for eEF1A. These results support the model that upon ATP hydrolysis, eEF3 interacts with eEF1A to help catalyze the delivery of aminoacyl-tRNA at the A-site of the ribosome. The dynamics of when eEF3 interacts with eEF1A may be part of the signal for transition of the post to pre-translocational ribosomal state in yeast.
Resumo:
Eukaryotic initiation factor 2A (eIF2A) has been shown to direct binding of the initiator methionyl-tRNA (Met-tRNA(i)) to 40 S ribosomal subunits in a codon-dependent manner, in contrast to eIF2, which requires GTP but not the AUG codon to bind initiator tRNA to 40 S subunits. We show here that yeast eIF2A genetically interacts with initiation factor eIF4E, suggesting that both proteins function in the same pathway. The double eIF2A/eIF4E-ts mutant strain displays a severe slow growth phenotype, which correlated with the accumulation of 85% of the double mutant cells arrested at the G(2)/M border. These cells also exhibited a disorganized actin cytoskeleton and elevated actin levels, suggesting that eIF2A might be involved in controlling the expression of genes involved in morphogenic processes. Further insights into eIF2A function were gained from the studies of eIF2A distribution in ribosomal fractions obtained from either an eIF5BDelta (fun12Delta) strain or a eIF3b-ts (prt1-1) strain. It was found that the binding of eIF2A to 40 and 80 S ribosomes was not impaired in either strain. We also found that eIF2A functions as a suppressor of Ure2p internal ribosome entry site-mediated translation in yeast cells. The regulation of expression from the URE2 internal ribosome entry site appears to be through the levels of eIF2A protein, which has been found to be inherently unstable with a half-life of approximately 17 min. It was hypothesized that this instability allows for translational control through the level of eIF2A protein in yeast cells.
Resumo:
BACKGROUND: Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. RESULTS: Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. CONCLUSIONS: The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass properties do lead to increased volumetric yields without the need to resort to complex control or cultivation schemes. This is anticipated to be of particular value in the production of challenging targets such as membrane proteins.
Resumo:
Having decided on yeast as a production host, the choice of species is often the first question any researcher new to the field will ask. With over 500 known species of yeast to date, this could pose a significant challenge. However, in reality, only very few species of yeast have been employed as host organisms for the production of recombinant proteins. The two most widely used, Saccharomyces cerevisiae and Pichia pastoris, are compared and contrasted here.
Resumo:
The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types. © 2012 Cartwright et al.
Resumo:
The yeast Saccharomyces cerevisiae is an important model organism for the study of cell biology. The similarity between yeast and human genes and the conservation of fundamental pathways means it can be used to investigate characteristics of healthy and diseased cells throughout the lifespan. Yeast is an equally important biotechnological tool that has long been the organism of choice for the production of alcoholic beverages, bread and a large variety of industrial products. For example, yeast is used to manufacture biofuels, lubricants, detergents, industrial enzymes, food additives and pharmaceuticals such as anti-parasitics, anti-cancer compounds, hormones (including insulin), vaccines and nutraceuticals. Its function as a cell factory is possible because of the speed with which it can be grown to high cell yields, the knowledge that it is generally recognized as safe (GRAS) and the ease with which metabolism and cellular pathways, such as translation can be manipulated. In this thesis, these two pathways are explored in the context of their biotechnological application to ageing research: (i) understanding translational processes during the high-yielding production of membrane protein drug targets and (ii) the manipulation of yeast metabolism to study the molecule, L-carnosine, which has been proposed to have anti-ageing properties. In the first of these themes, the yeast strains, spt3?, srb5?, gcn5? and yTHCBMS1, were examined since they have been previously demonstrated to dramatically increase the yields of a target membrane protein (the aquaporin, Fps1) compared to wild-type cells. The mechanisms underlying this discovery were therefore investigated. All high yielding strains were shown to have an altered translational state (mostly characterised by an initiation block) and constitutive phosphorylation of the translational initiation factor, eIF2a. The relevance of the initiation block was further supported by the finding that other strains, with known initiation blocks, are also high yielding for Fps1. A correlation in all strains between increased Fps1 yields and increased production of the transcriptional activator protein, Gcn4, suggested that yields are subject to translational control. Analysis of the 5´ untranslated region (UTR) of FPS1 revealed two upstream open reading frames (uORFs). Mutagenesis data suggest that high yielding strains may circumvent these control elements through either a leaky scanning or a re-initiation mechanism. In the second theme, the dipeptide L-carnosine (ß-alanyl-L-histidine) was investigated: it has previously been shown to inhibit the growth of cancer cells but delay senescence in cultured human fibroblasts and extend the lifespan of male fruit flies. To understand these apparently contradictory properties, the effects of L-carnosine on yeast were studied. S. cerevisiae can respire aerobically when grown on a non-fermentable carbon source as a substrate but has a respiro-fermentative metabolism when grown on a fermentable carbon source; these metabolisms mimic normal cell and cancerous cell metabolisms, respectively. When yeast were grown on fermentable carbon sources, in the presence of L-carnosine, a reduction in cell growth and viability was observed, which was not apparent for cells grown on a non-fermentable carbon source. The metabolism-dependent mechanism was confirmed in the respiratory yeast species Pichia pastoris. Further analysis of S. cerevisiae yeast strains with deletions in their nutrient-sensing pathway, which result in an increase in respiratory metabolism, confirmed the metabolism-dependent effects of L-carnosine.
Resumo:
The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*. encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Δ strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a nonethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Δ strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain. Copyright © 2005, American Society for Microbiology. All Rights Reserved.