9 resultados para Ruelle-Takens scenario

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Attractor properties of a popular discrete-time neural network model are illustrated through numerical simulations. The most complex dynamics is found to occur within particular ranges of parameters controlling the symmetry and magnitude of the weight matrix. A small network model is observed to produce fixed points, limit cycles, mode-locking, the Ruelle-Takens route to chaos, and the period-doubling route to chaos. Training algorithms for tuning this dynamical behaviour are discussed. Training can be an easy or difficult task, depending whether the problem requires the use of temporal information distributed over long time intervals. Such problems require training algorithms which can handle hidden nodes. The most prominent of these algorithms, back propagation through time, solves the temporal credit assignment problem in a way which can work only if the relevant information is distributed locally in time. The Moving Targets algorithm works for the more general case, but is computationally intensive, and prone to local minima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatically generating maps of a measured variable of interest can be problematic. In this work we focus on the monitoring network context where observations are collected and reported by a network of sensors, and are then transformed into interpolated maps for use in decision making. Using traditional geostatistical methods, estimating the covariance structure of data collected in an emergency situation can be difficult. Variogram determination, whether by method-of-moment estimators or by maximum likelihood, is very sensitive to extreme values. Even when a monitoring network is in a routine mode of operation, sensors can sporadically malfunction and report extreme values. If this extreme data destabilises the model, causing the covariance structure of the observed data to be incorrectly estimated, the generated maps will be of little value, and the uncertainty estimates in particular will be misleading. Marchant and Lark [2007] propose a REML estimator for the covariance, which is shown to work on small data sets with a manual selection of the damping parameter in the robust likelihood. We show how this can be extended to allow treatment of large data sets together with an automated approach to all parameter estimation. The projected process kriging framework of Ingram et al. [2007] is extended to allow the use of robust likelihood functions, including the two component Gaussian and the Huber function. We show how our algorithm is further refined to reduce the computational complexity while at the same time minimising any loss of information. To show the benefits of this method, we use data collected from radiation monitoring networks across Europe. We compare our results to those obtained from traditional kriging methodologies and include comparisons with Box-Cox transformations of the data. We discuss the issue of whether to treat or ignore extreme values, making the distinction between the robust methods which ignore outliers and transformation methods which treat them as part of the (transformed) process. Using a case study, based on an extreme radiological events over a large area, we show how radiation data collected from monitoring networks can be analysed automatically and then used to generate reliable maps to inform decision making. We show the limitations of the methods and discuss potential extensions to remedy these.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scenario Planning is a strategy tool with growing popularity in both academia and practical situations. Current practices in the teaching of scenario planning are largely based on existing literature which utilises scenario planning to develop strategies for the future, primarily considering the assessment of perceived macro-external environmental uncertainties. However there is a body of literature hitherto ignored by scenario planning researchers, which suggests that Perceived Environmental Uncertainty (PEU) influences micro-external or industrial environmental as well as the internal environment of the organisation. This paper provides a review of the most dominant theories on scenario planning process, demonstrates the need to consider PEU theory within scenario planning and presents how this can be done. The scope of this paper is to enhance the scenario planning process as a tool taught for Strategy Development. A case vignette is developed based on published scenarios to demonstrate the potential utilisation of the proposed process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scenarioplanning is a strategy tool with growing popularity in both academia and practical situations. Current practices of scenarioplanning are largely based on existing literature which utilises scenarioplanning to develop strategies for the future, primarily considering the assessment of perceived macro-external environmentaluncertainties. However there is a body of literature hitherto ignored by scenarioplanning researchers, which suggests that PerceivedEnvironmentalUncertainty (PEU) influences the micro-external as well as the internal environment of the organisation. This paper reviews the most dominant theories on scenarioplanning process and PEU, developing three propositions for the practice of scenarioplanning process. Furthermore, it shows how these propositions can be integrated in the scenarioplanning process in order to improve the development of strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scenario planning literature is focused on corporate level interventions. There is a general consensus on the method, but there is little debate about the stages involved in building and using the scenarios. This article presents a case study of a scenario planning intervention, which was conducted at a business unit of the British division of one of the largest beauty and cosmetic products multinationals. The method adopted in this case study has some fundamental differences to the existing models used at corporate level. This research is based on the principles of autoethnography, since its purpose is to present self-critical reflections, enhanced by reflective and reflexive conversations on a scenario planning method used at business unit level. The critical reflections concern a series of critical incidents which distinguish this method from existing intuitive logic scenario planning models which are used at corporate level planning. Ultimately this article contributes to the scenario planning method literature by providing insights into its practice at business unit level. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this thesis were to investigate the neuropsychological, neurophysiological, and cognitive contributors to mobility changes with increasing age. In a series of studies with adults aged 45-88 years, unsafe pedestrian behaviour and falls were investigated in relation to i) cognitive functions (including response time variability, executive function, and visual attention tests), ii) mobility assessments (including gait and balance and using motion capture cameras), iii) motor initiation and pedestrian road crossing behavior (using a simulated pedestrian road scene), iv) neuronal and functional brain changes (using a computer based crossing task with magnetoencephalography), and v) quality of life questionnaires (including fear of falling and restricted range of travel). Older adults are more likely to be fatally injured at the far-side of the road compared to the near-side of the road, however, the underlying mobility and cognitive processes related to lane-specific (i.e. near-side or far-side) pedestrian crossing errors in older adults is currently unknown. The first study explored cognitive, motor initiation, and mobility predictors of unsafe pedestrian crossing behaviours. The purpose of the first study (Chapter 2) was to determine whether collisions at the near-side and far-side would be differentially predicted by mobility indices (such as walking speed and postural sway), motor initiation, and cognitive function (including spatial planning, visual attention, and within participant variability) with increasing age. The results suggest that near-side unsafe pedestrian crossing errors are related to processing speed, whereas far-side errors are related to spatial planning difficulties. Both near-side and far-side crossing errors were related to walking speed and motor initiation measures (specifically motor initiation variability). The salient mobility predictors of unsafe pedestrian crossings determined in the above study were examined in Chapter 3 in conjunction with the presence of a history of falls. The purpose of this study was to determine the extent to which walking speed (indicated as a salient predictor of unsafe crossings and start-up delay in Chapter 2), and previous falls can be predicted and explained by age-related changes in mobility and cognitive function changes (specifically within participant variability and spatial ability). 53.2% of walking speed variance was found to be predicted by self-rated mobility score, sit-to-stand time, motor initiation, and within participant variability. Although a significant model was not found to predict fall history variance, postural sway and attentional set shifting ability was found to be strongly related to the occurrence of falls within the last year. Next in Chapter 4, unsafe pedestrian crossing behaviour and pedestrian predictors (both mobility and cognitive measures) from Chapter 2 were explored in terms of increasing hemispheric laterality of attentional functions and inter-hemispheric oscillatory beta power changes associated with increasing age. Elevated beta (15-35 Hz) power in the motor cortex prior to movement, and reduced beta power post-movement has been linked to age-related changes in mobility. In addition, increasing recruitment of both hemispheres has been shown to occur and be beneficial to perform similarly to younger adults in cognitive tasks (Cabeza, Anderson, Locantore, & McIntosh, 2002). It has been hypothesised that changes in hemispheric neural beta power may explain the presence of more pedestrian errors at the farside of the road in older adults. The purpose of the study was to determine whether changes in age-related cortical oscillatory beta power and hemispheric laterality are linked to unsafe pedestrian behaviour in older adults. Results indicated that pedestrian errors at the near-side are linked to hemispheric bilateralisation, and neural overcompensation post-movement, 4 whereas far-side unsafe errors are linked to not employing neural compensation methods (hemispheric bilateralisation). Finally, in Chapter 5, fear of falling, life space mobility, and quality of life in old age were examined to determine their relationships with cognition, mobility (including fall history and pedestrian behaviour), and motor initiation. In addition to death and injury, mobility decline (such as pedestrian errors in Chapter 2, and falls in Chapter 3) and cognition can negatively affect quality of life and result in activity avoidance. Further, number of falls in Chapter 3 was not significantly linked to mobility and cognition alone, and may be further explained by a fear of falling. The objective of the above study (Study 2, Chapter 3) was to determine the role of mobility and cognition on fear of falling and life space mobility, and the impact on quality of life measures. Results indicated that missing safe pedestrian crossing gaps (potentially indicating crossing anxiety) and mobility decline were consistent predictors of fear of falling, reduced life space mobility, and quality of life variance. Social community (total number of close family and friends) was also linked to life space mobility and quality of life. Lower cognitive functions (particularly processing speed and reaction time) were found to predict variance in fear of falling and quality of life in old age. Overall, the findings indicated that mobility decline (particularly walking speed or walking difficulty), processing speed, and intra-individual variability in attention (including motor initiation variability) are salient predictors of participant safety (mainly pedestrian crossing errors) and wellbeing with increasing age. More research is required to produce a significant model to explain the number of falls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing trend of disaster victims globally is posing a complex challenge for disaster management authorities. Moreover, to accomplish successful transition between preparedness and response, it is important to consider the different features inherent to each type of disaster. Floods are portrayed as one of the most frequent and harmful disasters, hence introducing the necessity to develop a tool for disaster preparedness to perform efficient and effective flood management. The purpose of the article is to introduce a method to simultaneously define the proper location of shelters and distribution centers, along with the allocation of prepositioned goods and distribution decisions required to satisfy flood victims. The tool combines the use of a raster geographical information system (GIS) and an optimization model. The GIS determines the flood hazard of the city areas aiming to assess the flood situation and to discard floodable facilities. Then, the multi-commodity multimodal optimization model is solved to obtain the Pareto frontier of two criteria: distance and cost. The methodology was applied to a case study in the flood of Villahermosa, Mexico, in 2007, and the results were compared to an optimized scenario of the guidelines followed by Mexican authorities, concluding that the value of the performance measures was improved using the developed method. Furthermore, the results exhibited the possibility to provide adequate care for people affected with less facilities than the current approach and the advantages of considering more than one distribution center for relief prepositioning.