11 resultados para Roentgen Laser, Plasma

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Proliferative diabetic retinopathy (PDR) may be a response to abnormal angiogenic growth factors such as vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), and the soluble angiopoietin receptor tie-2. The authors hypothesised the following: (a) there are differences in plasma levels of these growth factors in different grades of diabetic retinopathy; and (b) that the effects of intervention with panretinal laser photocoagulation (PRP) for PDR, and angiotensin receptor blockade (using eprosartan) for patients with other grades of diabetic retinopathy will be to reduce levels of the growth factors. Methods: Cross sectional and interventional study (using PRP and eprosartan) in diabetic patients. VEGF, Ang-2, and tie-2 were measured by ELISA. Results: VEGF (p<0.001) and Ang-2 levels (p<0.001) were significantly higher in 93 diabetic patients compared to 20 healthy controls, with the highest levels in grade 2 and grade 3 diabetic retinopathy (p<0.05). Tie-2 was lower in diabetics compared to controls (p = 0.008), with no significant differences between the diabetic subgroups. Overall, VEGF significantly correlated with Ang-2 (p<0.001) and tie-2 (p = 0.004) but the correlation between Ang-2 and tie-2 levels was not significant (p = 0.065). Among diabetic patients only, VEGF levels were significantly correlated with Ang-2 (p<0.001) and tie-2 (p<0.001); the correlation between Ang-2 and tie-2 levels was also significant (p<0.001). There were no statistically significant effects of laser photocoagulation on plasma VEGF, Ang-2, and tie-2 in the 19 patients with PDR, or any effects of eprosartan in the 28 patients with non-proliferative diabetic retinopathy. Conclusion: Increased plasma levels of VEGF and Ang-2, as well as lower soluble tie-2, were found in diabetic patients. The highest VEGF and Ang-2 levels were seen among patients with pre-proliferative and proliferative retinopathy, but there was no relation of tie-2 to the severity of retinopathy. As the majority of previous research into Ang-2 and tie-2 has been in relation to angiogenesis and malignancy, the present study would suggest that Ang-2 and tie-2 may be used as potential indices of angiogenesis in diabetes mellitus (in addition to VEGF) and may help elucidate the role of the angiopoietin/tie-2 system in this condition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Principles of the femtosecond fabrication of the optoelectronic components in glass are explained and illustrated by examples of the in-bulk writing. The results of the experimental investigation of the dependence of the induced index change on the pulse energy and the numerical modelling of the corresponding laser-glass interaction are presented. The distribution of the plasma density is simulated that may bridge the gap between the models of the pulse propagation and the induced permanent refractive index change. © 2006 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor. © 2011 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes experimental and numerical results of the plasma-assisted microfabrication of subwavelength structures by means of point-by point femtosecond laser inscription. It is shown that the spatio-temporal evolution of light and plasma patterns critically depend on input power. Subwavelength inscription corresponds to the supercritical propagation regimes when pulse power is several times self-focusing threshold. Experimental and numerical profiles show quantitative agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive model of processes involved in femtosecond laser inscription and the subsequent structural material modification is developed. Different time scales of the pulse-plasma dynamics and thermo-mechanical relaxation allow for separate numerical treatments of these processes, while linking them by an energy transfer equation. The model is illustrated and analysed on examples of inscription in fused silica and the results are used to explain previous experimental observations. © 2007 Springer Science+Business Media, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last decade, microfabrication of photonic devices by means of intense femtosecond (fs) laser pulses has emerged as a novel technology. A common requirement for the production of these devices is that the refractive index modification pitch size should be smaller than the inscribing wavelength. This can be achieved by making use of the nonlinear propagation of intense fs laser pulses. Nonlinear propagation of intense fs laser pulses is an extremely complicated phenomenon featuring complex multiscale spatiotemporal dynamics of the laser pulses. We have utilized a principal approach based on finite difference time domain (FDTD) modeling of the full set of Maxwell's equations coupled to the conventional Drude model for generated plasma. Nonlinear effects are included, such as self-phase modulation and multiphoton absorption. Such an approach resolves most problems related to the inscription of subwavelength structures, when the paraxial approximation is not applicable to correctly describe the creation of and scattering on the structures. In a representative simulation of the inscription process, the signature of degenerate four wave mixing has been found. © 2012 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes experimental and numerical results of the plasma-assisted microfabrication of subwavelength structures by means of point-by point femtosecond laser inscription. It is shown that the spatio-temporal evolution of light and plasma patterns critically depend on input power. Subwavelength inscription corresponds to the supercritical propagation regimes when pulse power is several times self-focusing threshold. Experimental and numerical profiles show quantitative agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femtosecond laser microfabrication has emerged over the last decade as a 3D flexible technology in photonics. Numerical simulations provide an important insight into spatial and temporal beam and pulse shaping during the course of extremely intricate nonlinear propagation (see e.g. [1,2]). Electromagnetics of such propagation is typically described in the form of the generalized Non-Linear Schrdinger Equation (NLSE) coupled with Drude model for plasma [3]. In this paper we consider a multi-threaded parallel numerical solution for a specific model which describes femtosecond laser pulse propagation in transparent media [4, 5]. However our approach can be extended to similar models. The numerical code is implemented in NVIDIA Graphics Processing Unit (GPU) which provides an effitient hardware platform for multi-threded computing. We compare the performance of the described below parallel code implementated for GPU using CUDA programming interface [3] with a serial CPU version used in our previous papers [4,5]. © 2011 IEEE.