2 resultados para Robot control

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The high capital cost of robots prohibit their economic application. One method of making their application more economic is to increase their operating speed. This can be done in a number of ways e.g. redesign of robot geometry, improving actuators and improving control system design. In this thesis the control system design is considered. It is identified in the literature review that two aspects in relation to robot control system design have not been addressed in any great detail by previous researchers. These are: how significant are the coupling terms in the dynamic equations of the robot and what is the effect of the coupling terms on the performance of a number of typical independent axis control schemes?. The work in this thesis addresses these two questions in detail. A program was designed to automatically calculate the path and trajectory and to calculate the significance of the coupling terms in an example application of a robot manipulator tracking a part on a moving conveyor. The inertial and velocity coupling terms have been shown to be of significance when the manipulator was considered to be directly driven. A simulation of the robot manipulator following the planned trajectory has been established in order to assess the performance of the independent axis control strategies. The inertial coupling was shown to reinforce the control torque at the corner points of the trajectory, where there was an abrupt demand in acceleration in each axis but of opposite sign. This reduced the tracking error however, this effect was not controllable. A second effect was due to the velocity coupling terms. At high trajectory speeds it was shown, by means of a root locus analysis, that the velocity coupling terms caused the system to become unstable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A survey of the existing state-of-the-art of turbine blade manufacture highlights two operations that have not been automated namely that of loading of a turbine blade into an encapsulation die, and that of removing a machined blade from the encapsulation block. The automation of blade decapsulation has not been pursued. In order to develop a system to automate the loading of an encapsulation die a prototype mechanical handling robot has been designed together with a computer controlled encapsulation die. The robot has been designed as a mechanical handling robot of cylindrical geometry, suitable for use in a circular work cell. It is the prototype for a production model to be called `The Cybermate'. The prototype robot is mechanically complete but due to unforeseen circumstances the robot control system is not available (the development of the control system did not form a part of this project), hence it has not been possible to fully test and assess the robot mechanical design. Robot loading of the encapsulation die has thus been simulated. The research work with regard to the encapsulation die has focused on the development of computer controlled, hydraulically actuated, location pins. Such pins compensate for the inherent positional inaccuracy of the loading robot and reproduce the dexterity of the human operator. Each pin comprises a miniature hydraulic cylinder, controlled by a standard bidirectional flow control valve. The precision positional control is obtained through pulsing of the valves under software control, with positional feedback from an 8-bit transducer. A test-rig comprising one hydraulic location pin together with an opposing spring loaded pin has demonstrated that such a pin arrangement can be controlled with a repeatability of +/-.00045'. In addition this test-rig has demonstrated that such a pin arrangement can be used to gauge and compensate for the dimensional error of the component held between the pins, by offsetting the pin datum positions to allow for the component error. A gauging repeatability of +/- 0.00015' was demonstrated. This work has led to the design and manufacture of an encapsulation die comprising ten such pins and the associated computer software. All aspects of the control software except blade gauging and positional data storage have been demonstrated. Work is now required to achieve the accuracy of control demonstrated by the single pin test-rig, with each of the ten pins in the encapsulation die. This would allow trials of the complete loading cycle to take place.