6 resultados para Rice husk biochar

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic pyrolysis experiments have been carried out on Brunei rice husk (BRH) to obtain bio-oil using a fixed-bed pyrolysis rig. ZSM-5, Al-MCM-41, Al-MSU-F and Brunei rice husk ash (BRHA) were used as the catalysts for the catalytic pyrolysis experiments and comparison was done to analyse the changes in the bio-oil properties and yield. Properties of the liquid catalytic and non-catalytic bio-oil were analysed in terms of water content, pH, acid number, viscosity, density and calorific value. The bio-oil chemical composition shows that ZSM-5 increases the production of aromatic hydrocarbons and light phenols, whilst Al-MCM-41 reduces the acetic acid production. The catalytic runs increased the calorific value and water content in the bio-oil, whilst viscosity, density and acid number is decreased. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rice husks from Brunei were subjected via intermediate pyrolysis for bio-oil production. Two main objectives were set out for this study. The application of intermediate pyrolysis on Brunei rice husk for the production of bio-oil is the main objective of this experiment. Characterisation of the rice husks was inclusive as a pre-requisite step to assess the suitability as feedstock for production of liquid fuels. Following on from the characterisation results, a temperature of 450°C was established as the optimum temperature for the production of bio-oil. A homogenous bio-oil was obtained from the pyrolysis of dry rice husk, and the physicochemical properties and chemical compositions were analysed. The second objective is the introduction of catalysts into the pyrolysis process which aims to improve the bio-oil quality, and maximise the desired liquid bio-oil properties. The incorporation of the catalysts was done via a fixed tube reactor into the pyrolysis system. Ceramic monoliths were used as the catalyst support, with montmorillonite clay as a binder to attach the catalysts onto the catalyst support. ZSM-5, Al-MCM-41, Al-MSU-F and Brunei rice husk ash (BRHA) together with its combination were adopted as catalysts. Proposed criterions dictated the selection of the best catalysts, subsequently leading to the optimisation process for bio-oil production. ZSM-5/Al-MCM-41 proved the most desirable catalyst, which increases the production of aromatics and phenols, decreased the organic acids and improved the physicochemical properties such as the pH, viscosity, density and H:C molar ratios. Variation in the ratio and positioning of both catalysts were the significant key factor for the catalyst optimisation study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explored a new approach to prepare phase change microcapsules using carbon-based particles via Pickering emulsions for energy storage applications. Rice-husk-char, a by-product in biofuel production, containing 53.58 wt% of carbon was used as a model carbon-based material to encapsulate hexadecane. As a model phase change material, hexadecane was emulsified in aqueous suspensions of rice-husk-char nanoparticles. Water soluble polymers poly(diallyldimethyl-ammonium chloride) and poly(sodium styrene sulfonate) were used to fix the rice-husk-char nanoparticles on the emulsion droplets through layer-by-layer assembly to enhance the structural stability of the microcapsules. The microcapsules formed are composed of a thin shell encompassing a large core consisting of hexadecane. Thermal gravimetrical and differential scanning calorimeter analyses showed the phase change enthalpy of 80.9 kJ kg−1 or 120.0 MJ m−3. Design criteria of phase change microcapsules and preparation considerations were discussed in terms of desired applications. This work demonstrated possible utilisations of biomass-originated carbon-based material for thermal energy recovery and storage applications, which can be a new route of carbon capture and utilisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, rice husk and corn stalk have been pyrolyzed in an auger pyrolysis reactor at pyrolysis temperatures of 350, 400, 450, 500, 550, and 600 °C in order to investigate the effect of the pyrolysis temperature on the pyrolysis performance of the reactor and physicochemical properties of pyrolysis products (this paper focuses on char and gas). The results have shown that the pyrolysis temperature significantly affects the mass yields and properties of the pyrolysis products. The mass yields of pyrolysis liquid and char are comparable to those reported for the same feedstocks processed in fluidized bed reactors. With the increase of the pyrolysis temperature, the pyrolysis liquid yield shows a peak at 500 °C, the char yield decreases, and the gas yield increases for both feedstocks. The higher heating value (HHV) and volatile matter content of char increase as the pyrolysis temperature increases from 350 to 600 °C. The gases obtained from the pyrolysis of rice husk and corn stalk mainly contain CO2, CO, CH4, H2, and other light hydrocarbons; the molar fractions of combustible gases increase and therefore their HHVs subsequently increase with the increase of the pyrolysis temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermochemical characterisation of agricultural biomass wastes from West African region has been carried out and their potential use as feedstock in thermochemical conversion processes determined. Proximate, ultimate, structural compositions, calorific values, thermogravimetry (TGA) and derivative thermogravimetry (DTG) analyses were carried out on corn straw and cobs, rice straw and husks, cocoa pod, jatropha curcas and moringa olifiera seed cakes, parinari polyandra fruit shell and sugarcane bagasse. Moringa olifiera seed cakes and cocoa pods were found to contain the highest moisture contents. Rice straw was found to contain a high ash content of 45.76. wt.%. The level of nitrogen and sulphur in all the samples were very low. Rice husk was found to have the highest lignin contents while corn cob low lignin contents indicate a potential feedstock source for quality bio-oil production using thermochemical process. © 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomass pyrolysis to bio-oil is one of the promising sustainable fuels. In this work, relation between biomass feedstock element characteristic and pyrolysis process outputs was explored. The element characteristics considered in this study include moisture, ash, fix carbon, volatile matter, carbon, hydrogen, nitrogen, oxygen, and sulphur. A semi-batch fixed bed reactor was used for biomass pyrolysis with heating rate of 30 °C/min from room temperature to 600 °C and the reactor was held at 600 °C for 1 h before cooling down. Constant nitrogen flow rate of 5 L/min was provided for anaerobic condition. Rice husk, Sago biomass and Napier grass were used in the study to form different element characteristic of feedstock by altering mixing ratio. Comparison between each element characteristic to total produced bio-oil yield, aqueous phase bio-oil yield, organic phase bio-oil yield, higher heating value of organic phase bio-oil, and organic bio-oil compounds was conducted. The results demonstrate that process performance is associated with feedstock properties, which can be used as a platform to access the process feedstock element acceptance range to estimate the process outputs. Ultimately, this work evaluated the element acceptance range for proposed biomass pyrolysis technology to integrate alternative biomass species feedstock based on element characteristic to enhance the flexibility of feedstock selection.