11 resultados para Rice -- Biotechnology
em Aston University Research Archive
Resumo:
Genome sequences from many organisms, including humans, have been completed, and high-throughput analyses have produced burgeoning volumes of 'omics' data. Bioinformatics is crucial for the management and analysis of such data and is increasingly used to accelerate progress in a wide variety of large-scale and object-specific functional analyses. Refined algorithms enable biotechnologists to follow 'computer-aided strategies' based on experiments driven by high-confidence predictions. In order to address compound problems, current efforts in immuno-informatics and reverse vaccinology are aimed at developing and tuning integrative approaches and user-friendly, automated bioinformatics environments. This will herald a move to 'computer-aided biotechnology': smart projects in which time-consuming and expensive large-scale experimental approaches are progressively replaced by prediction-driven investigations.
Resumo:
A notable feature of the recent commercialisation of biotechnology has been the success of 200 or so new firms, established in America since 1976, in exploiting specialised market niches. A key factor in their formation has been the ready availability of venture capital funding. These firms have been instrumental in establishing America's lead in exploiting biotechnology. It is this example which Britain has attempted to emulate as part of its strategy for developing its own biotechnology capabilities. This thesis investigated some aspects of the relationship between biotechnology and venture capital, concentrating on the determinants of the venture capitalist's investment decision. Following an extensive literature survey, two hypothetical business proposals were used to find what venture capitalists themselves consider to be the key elements of this decision. It was found that venture capitalists invest in people, not products, and businesses, not industries. It was concluded that venture capital-backed small firms should, therefore, be seen as an adjunct to the development of biotechnology in Britain, rather than as a substitute for a co-ordinated, co-operative strategy involving Government, the financial institutions, industry and academia. This is chiefly because the small size of the UK's domestic market means that many potentially important innovations in biotechnology may continue to be lost, since the short term identification of market opportunities for biotechnology products will dictate that they are insupportable in Britain alone. In addition, the data analysis highlighted some interesting methodological issues concerning the investigation of investment decision making. These related especially to shortcomings in the use of scoresheets and questionnaires in research in this area. The conclusion here was that future research should concentrate on the reasons why an individual reaches an investment decision. It is argued that only in this way can the nature of the evaluation procedures employed by venture capitalists be properly understood.
Resumo:
Biotechnology is one of a series of new `generic technologies' that have been identified by western governments as possessing stategic economic opportunities. In this thesis I examine the characteristics of the technology and the government policies that have been developed to both promote and exploit the underpinning scientific research for biotechnology. The approach I have taken involves an in-depth analysis of the role of university-industry research relations in the development of biotechnology. To this end I carried out a detailed survey of biotechnology companies in the UK on the nature of their interactions and objectives. Through individual case studies of the SERC and DTI club mechanisms in biotechnology, I provide a contemporary appraisal of the development of new mechanisms involving co-ordination and cooperation between industry, government and academia, established to couple state funded science and national economic development. The public policy implications of the club funding systems for science in the UK are examined.
Resumo:
Catalytic pyrolysis experiments have been carried out on Brunei rice husk (BRH) to obtain bio-oil using a fixed-bed pyrolysis rig. ZSM-5, Al-MCM-41, Al-MSU-F and Brunei rice husk ash (BRHA) were used as the catalysts for the catalytic pyrolysis experiments and comparison was done to analyse the changes in the bio-oil properties and yield. Properties of the liquid catalytic and non-catalytic bio-oil were analysed in terms of water content, pH, acid number, viscosity, density and calorific value. The bio-oil chemical composition shows that ZSM-5 increases the production of aromatic hydrocarbons and light phenols, whilst Al-MCM-41 reduces the acetic acid production. The catalytic runs increased the calorific value and water content in the bio-oil, whilst viscosity, density and acid number is decreased. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Rice husks from Brunei were subjected via intermediate pyrolysis for bio-oil production. Two main objectives were set out for this study. The application of intermediate pyrolysis on Brunei rice husk for the production of bio-oil is the main objective of this experiment. Characterisation of the rice husks was inclusive as a pre-requisite step to assess the suitability as feedstock for production of liquid fuels. Following on from the characterisation results, a temperature of 450°C was established as the optimum temperature for the production of bio-oil. A homogenous bio-oil was obtained from the pyrolysis of dry rice husk, and the physicochemical properties and chemical compositions were analysed. The second objective is the introduction of catalysts into the pyrolysis process which aims to improve the bio-oil quality, and maximise the desired liquid bio-oil properties. The incorporation of the catalysts was done via a fixed tube reactor into the pyrolysis system. Ceramic monoliths were used as the catalyst support, with montmorillonite clay as a binder to attach the catalysts onto the catalyst support. ZSM-5, Al-MCM-41, Al-MSU-F and Brunei rice husk ash (BRHA) together with its combination were adopted as catalysts. Proposed criterions dictated the selection of the best catalysts, subsequently leading to the optimisation process for bio-oil production. ZSM-5/Al-MCM-41 proved the most desirable catalyst, which increases the production of aromatics and phenols, decreased the organic acids and improved the physicochemical properties such as the pH, viscosity, density and H:C molar ratios. Variation in the ratio and positioning of both catalysts were the significant key factor for the catalyst optimisation study.
Resumo:
A family of tungstated zirconia solid acid catalysts were synthesised via wet impregnation and subsequent thermochemical processing for the transformation of glucose to 5-hydroxymethylfurfural (HMF). Acid strength increased with tungsten loading and calcination temperature, associated with stabilisation of tetragonal zirconia. High tungsten dispersions of between 2 and 7 W atoms·nm−2 were obtained in all cases, equating to sub-monolayer coverages. Glucose isomerisation and subsequent dehydration via fructose to HMF increased with W loading and calcination temperature up to 600 °C, indicating that glucose conversion to fructose was favoured over weak Lewis acid and/or base sites associated with the zirconia support, while fructose dehydration and HMF formation was favoured over Brönsted acidic WOx clusters. Aqueous phase reforming of steam exploded rice straw hydrolysate and condensate was explored heterogeneously for the first time over a 10 wt% WZ catalyst, resulting in excellent HMF yields as high as 15% under mild reaction conditions.
Resumo:
Project Report: The PHAR-IN ("Competences for industrial pharmacy practice in biotechnology") looked at whether there is a difference in how industrial employees and academics rank competences for practice in the biotechnological industry. A small expert panel consisting of the authors of this paper produced a biotechnology competence framework by drawing up an initial list of competences then ranking them in importance using a three-stage Delphi process. The framework was next evaluated and validated by a large expert panel of academics (n = 37) and industrial employees (n = 154). Results show that priorities for industrial employees and academics were similar. The competences for biotechnology practice that received the highest scores were mainly in: . "Research and Development", . "Upstream" and "Downstream" Processing', " . "Product development and formulation", " . "Aseptic processing", ."Analytical methodology", . "Product stability", and . "Regulation". The main area of disagreement was in the category "Ethics and drug safety" where academics ranked competences higher than did industrial employees.
Resumo:
This paper explored a new approach to prepare phase change microcapsules using carbon-based particles via Pickering emulsions for energy storage applications. Rice-husk-char, a by-product in biofuel production, containing 53.58 wt% of carbon was used as a model carbon-based material to encapsulate hexadecane. As a model phase change material, hexadecane was emulsified in aqueous suspensions of rice-husk-char nanoparticles. Water soluble polymers poly(diallyldimethyl-ammonium chloride) and poly(sodium styrene sulfonate) were used to fix the rice-husk-char nanoparticles on the emulsion droplets through layer-by-layer assembly to enhance the structural stability of the microcapsules. The microcapsules formed are composed of a thin shell encompassing a large core consisting of hexadecane. Thermal gravimetrical and differential scanning calorimeter analyses showed the phase change enthalpy of 80.9 kJ kg−1 or 120.0 MJ m−3. Design criteria of phase change microcapsules and preparation considerations were discussed in terms of desired applications. This work demonstrated possible utilisations of biomass-originated carbon-based material for thermal energy recovery and storage applications, which can be a new route of carbon capture and utilisation.
Resumo:
In this study, rice husk and corn stalk have been pyrolyzed in an auger pyrolysis reactor at pyrolysis temperatures of 350, 400, 450, 500, 550, and 600 °C in order to investigate the effect of the pyrolysis temperature on the pyrolysis performance of the reactor and physicochemical properties of pyrolysis products (this paper focuses on char and gas). The results have shown that the pyrolysis temperature significantly affects the mass yields and properties of the pyrolysis products. The mass yields of pyrolysis liquid and char are comparable to those reported for the same feedstocks processed in fluidized bed reactors. With the increase of the pyrolysis temperature, the pyrolysis liquid yield shows a peak at 500 °C, the char yield decreases, and the gas yield increases for both feedstocks. The higher heating value (HHV) and volatile matter content of char increase as the pyrolysis temperature increases from 350 to 600 °C. The gases obtained from the pyrolysis of rice husk and corn stalk mainly contain CO2, CO, CH4, H2, and other light hydrocarbons; the molar fractions of combustible gases increase and therefore their HHVs subsequently increase with the increase of the pyrolysis temperature.