2 resultados para Rhodobacter capsulatus

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general strategy for the expression of bacterial membrane transport and receptor genes in Escherichia coli is described. Expression is amplified so that the encoded proteins comprise 5-35% of E. coli inner membrane protein. Depending upon their topology, proteins are produced with RGSH6 or a Strep tag at the C-terminus. These enable purification in mg quantities for crystallization and NMR studies. Examples of one nutrient uptake and one multidrug extrusion protein from Helicobacter pylori are described. This strategy is successful for membrane proteins from H. pylori, E. coli, Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, Microbacterium liquefaciens, Brucella abortus, Brucella melitensis, Campylobacter jejuni, Neisseria meningitides, Streptomyces coelicolor and Rhodobacter sphaeroides. ©2005 Biochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toll-like receptor (TLR)-4 signalling has been shown to accelerate atherosclerosis. As oxidised phospholipids are present in atherosclerotic plaque and have been shown to modulate TLR4 signalling, we investigated the role of oxidised 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC) in the regulation of TLR 1, 2, 4 and 6 signalling. Unlike established TLR agonists, OxPAPC did not induce NF-?B-dependent gene expression in monocytic THP-1 cells, human aortic endothelial cells or TLR-deficient HEK-293 cells transfected with TLRs 1, 2, 4 or 6. OxPAPC induction of IL-8 was not blocked by the TLR4 specific antagonist Rhodobacter sphaeroides LPS in human aortic endothelial cells, though OxPAPC potently inhibited TLR4 mediated IL-8 induction in these cells. OxPAPC upregulated IL-8 production in TLR4 deficient HEK-293 cells and this was not increased following TLR4 overexpression. Lipids extracted from carotid atherectomy samples did not stimulate TLR 1, 2, 4 or 6 signalling in a HEK-293 transfection assay. TLR4 signalling does not contribute to OxPAPC induced IL-8 expression in human epithelial HEK-293, monocytic THP-1 or aortic endothelial cells. As lipids extracted from diseased human artery also induced no TLR signalling, it is likely that the TLR-activating materials contributing to atherosclerosis are not of endogenous lipid origin.