120 resultados para Rhasis, Mohammed
em Aston University Research Archive
Resumo:
Human CD81 (hCD81) protein has been recombinantly produced in the methylotrophic yeast Pichia pastoris. The purified protein, produced at a yield of 1.75 mg/L of culture, was shown to interact with Hepatitis C virus E2 glycoprotein. Immunofluorescent and flow cytometric staining of P. pastoris protoplasts with monoclonal antibodies specific for the second extracellular loop (EC2) of hCD81 confirmed the antigenicity of the recombinant molecule. Full-length hCD81 was solubilized with an array of detergents and subsequently characterized using circular dichroism (CD) and analytical ultracentrifugation. These biophysical techniques confirmed that the protein solution comprises a homogenous species possessing a highly-defined alpha-helical secondary structure. The predicted alpha-helical content of the protein from CD analysis (77.1%) fits remarkably well with what would be expected (75.2%) from knowledge of the protein sequence together with the data from the crystal structure of the second extracellular loop. This study represents the first biophysical characterization of a full-length recombinant tetraspanin, and opens the way for structure-activity analyses of this ubiquitous family of transmembrane proteins.
Resumo:
Objectives The aim of this work was to investigate the effect of cholesterol on the bilayer loading of drugs and their subsequent release and to investigate fatty alcohols as an alternative bilayer stabiliser to cholesterol. Methods The loading and release rates of four low solubility drugs (diazepam, ibuprofen, midazolam and propofol) incorporated within the bilayer of multilamellar liposomes which contained a range of cholesterol (0–33 mol/mol%) or a fatty alcohol (tetradecanol, hexadecanol and octadecanol) were investigated. The molecular packing of these various systems was also investigated in Langmuir monolayer studies. Key findings Loading and release of drugs within the liposome bilayer was shown to be influenced by their cholesterol content: increasing cholesterol content was shown to reduce drug incorporation and inclusion of cholesterol in the bilayer changed the release profile of propofol from zero-order, for phosphatidyl choline only liposomes, to a first-order model when 11 to 33 total molar % of cholesterol was present in the formulation. At higher bilayer concentrations substitution of cholesterol with tetradecanol was shown to have less of a detrimental impact on bilayer drug loading. However, the presence of cholesterol within the liposome bilayer was shown to reduce drug release compared with fatty alcohols. Monolayer studies undertaken showed that effective mean area per molecule for a 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) : cholesterol mixture deviated by 9% from the predicted area compared with 5% with a similar DSPC : tetradecanol mixture. This evidence, combined with cholesterol being a much more bulky structure, indicated that the condensing influence of tetradecanol was less compared with cholesterol, thus supporting the reduced impact of tetradecanol on drug loading and drug retention. Conclusions Liposomes can be effectively formulated using fatty alcohols as an alternative bilayer stabiliser to cholesterol. The general similarities in the characteristics of liposomes containing fatty alcohols or cholesterol suggest a common behavioural influence for both compounds within the bilayer.
Resumo:
A plethora of techniques for the imaging of liposomes and other bilayer vesicles are available. However, sample preparation and the technique chosen should be carefully considered in conjunction with the information required. For example, larger vesicles such as multilamellar and giant unilamellar vesicles can be viewed using light microscopy and whilst vesicle confirmation and size prior to additional physical characterisations or more detailed microscopy can be undertaken, the technique is limited in terms of resolution. To consider the options available for visualising liposome-based systems, a wide range of microscopy techniques are described and discussed here: these include light, fluorescence and confocal microscopy and various electron microscopy techniques such as transmission, cryo, freeze fracture and environmental scanning electron microscopy. Their application, advantages and disadvantages are reviewed with regard to their use in analysis of lipid vesicles.
Resumo:
Physiological changes that take place at cellular level are usually reflective of their level of gene expression. Different formulation excipients have an impact on physiological behavior of the exposed cells and in turn affect transporter genes, enterocyte-mediated metabolism and toxicity biomarkers. The aim of this study was to prepare solid dispersion of paracetamol and evaluate genetic changes that occur in Caco-2 cell lines during the permeability of paracetamol alone and paracetamol solid dispersion formulations. Paracetamol-PEG 8000 solid dispersion was prepared by melt fusion method and the formulation was characterised using differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Formulation of solid dispersion resulted in the conversion of crystalline drug into an amorphous form. Permeability studies showed that paracetamol absorption was higher from the solid dispersion formulation. DNA microarrays analysis was carried out in order to investigate the involvement of any efflux/uptake transporters in paracetamol or its solid dispersion permeability. Neither transporter carriers nor efflux proteins were found to be involved in the absorption of paracetamol or its PEG solid dispersion. Gene expression analysis established that paracetamol toxicity was potentially reduced upon formulation into solid dispersion when ATP binding cassette (ABC) and solute carrier transporter (SLC) genes were analyzed.
Resumo:
With the accelerating industrialization process, even further increasing population and mass deforestation, ‘sustainability’ as a concept has only recently been popularized in Bangladesh. This paper sheds light on the sustainable development process in Bangladesh. It points out the major challenges to this process and identifies the motivating factors for a sustainable society in Bangladesh. The paper concludes with some strategies that are considered essential for the development of a sustainable society in Bangladesh, e.g., strong and effective regulatory framework, emphasis on rural entrepreneurship, development of indigenous technology and an integrated environmental management system.
Resumo:
This work investigated the purification of phosphoric acid using a suitable organic solvent, followed by re-extraction of the acid from the solvent using water. The work consisted of practical batch and continuous studies and the economics and design of a full scale plant, based on the experimental data. A comprehensive literature survey on the purification of wet process phosphoric acid by organic solvents is presented and the literature describing the design and operation of mixer-settlers has also been reviewed. In batch studies, the equilibrium and distribution curves for the systems water-phosphoric acid-solvent for Benzaldehyde, Cyclohexanol and Methylisobutylketone (MIBK) were determined together with hydrodynamic characteristics for both pure and impure systems. The settling time increased with acid concentration, but power input had no effect. Drop size was found to reduce with acid concentration and power input. For the continuous studies a novel horizontal mixer~settler cascade was designed, constructed and operated using pure and impure acid with MIBK as the solvent. The cascade incorporates three air turbine agitated, cylindrical 900 ml mixers, and three cylindrical 200 ml settlers with air-lift solvent interstage transfer. Mean drop size in the fully baffled mixer was correlated. Drop size distributions were log-normal and size decreased with acid concentration and power input and increased with dispersed phase hold-up. Phase inversion studies showed that the width of the ambivalent region depended upon rotor speed, hold-up and acid concentration. Settler characteristics were investigated by measuring wedge length. Distribution coefficients of impurities and acid were also investigated. The following optimum extraction conditions were found: initial acid concentration 63%, phase ratio of solvent to acid 1:1 (v/v), impeller speed recommended 900 r.p.m. In the washing step the maximum phase ratio of solvent to water was 8:1 (v/v). Work on phosphoric acid concentration involved constructing distillation equipment consisting of a 10& spherical still. A 100 T/d scale detailed process design including capital cost, operating cost and profitability was also completed. A profit model for phosphoric acid extraction was developed and maximised. Recommendations are made for both the application of the results to a practical design and for extensions of the study.
Resumo:
The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors that influence this. However, there are a few methods that study these systems in their natural hydrated state; commonly, the liposomes are visualized after drying, staining and/or fixation of the vesicles. Environmental scanning electron microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. We were the first to use ESEM to study the liposomes and niosomes, and have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses onto, or evaporates from, the sample in real-time. This provides an insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay for liposome formulation and stability.
Resumo:
Membrane proteins are drug targets for a wide range of diseases. Having access to appropriate samples for further research underpins the pharmaceutical industry's strategy for developing new drugs. This is typically achieved by synthesizing a protein of interest in host cells that can be cultured on a large scale, allowing the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to that of the native human source cells of many proteins of interest, while also being quick, easy and cheap to grow and process. Even in these cells, the production of human membrane proteins can be plagued by low functional yields; we wish to understand why. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast host strains. By relieving the bottlenecks to recombinant membrane protein production in yeast, we aim to contribute to the drug discovery pipeline, while providing insight into translational processes.
Resumo:
Brushite cements differ from apatite-forming compositions by consuming a lot of water in their setting reaction whereas apatite-forming cements consume little or no water at all. Only such cement systems that consume water during setting can theoretically produce near-zero porosity ceramics. This study aimed to produce such a brushite ceramic and investigated whether near elimination of porosity would prevent a burst release profile of incorporated antibiotics that is common to prior calcium phosphate cement delivery matrices. Through adjustment of the powder technological properties of the powder reactants, that is particle size and particle size distribution, and by adjusting citric acid concentration of the liquid phase to 800 mM, a relative porosity of as low as 11% of the brushite cement matrix could be achieved (a 60% reduction compared to previous studies), resulting in a wet unprecompacted compressive strength of 52 MPa (representing a more than 100% increase to previously reported results) with a workable setting time of 4.5 min of the cement paste. Up to 2 wt.% of vancomycin and ciprofloxacin could be incorporated into the cement system without loss of wet compressive strength. It was found that drug release rates could be controlled by the adjustable relative porosity of the cement system and burst release could be minimized and an almost linear release achieved, but the solubility of the antibiotic (vancomycin > ciprofloxacin) appeared also to be a crucial factor.
Resumo:
The aim of the work described in this paper was two-fold: (1) the purification of the hydroxylase component of the MSAMO to electrophoretic homogeneity using a four-step chromatographic strategy and (2) the crystallization of the two-component hydroxylase of the MSAMO in order to enhance our understanding of the precise three-dimensional structure of the MSAMO, thus yielding an insight into the nature of the active site of this enzyme. Optimised crystallization conditions were identified allowing growth of crystals of the hydroxylase component of the MSAMO within five days. Crystals exhibited a brown colour suggesting the presence on an intact Rieske-iron sulfur centre and diffracted to 7.0 Å when a few degrees of data were evaluated on a beam line X11. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Background Yeast is an important and versatile organism for studying membrane proteins. It is easy to cultivate and can perform higher eukaryote-like post-translational modifications. S. cerevisiae has a fully-sequenced genome and there are several collections of deletion strains available, whilst P. pastoris can produce very high cell densities (230 g/l). Results We have used both S. cerevisiae and P. pastoris to over-produce the following His6 and His10 carboxyl terminal fused membrane proteins. CD81 – 26 kDa tetraspanin protein (TAPA-1) that may play an important role in the regulation of lymphoma cell growth and may also act as the viral receptor for Hepatitis C-Virus. CD82 – 30 kDa tetraspanin protein that associates with CD4 or CD8 cells and delivers co-stimulatory signals for the TCR/CD3 pathway. MC4R – 37 kDa seven transmembrane G-protein coupled receptor, present on neurons in the hypothalamus region of the brain and predicted to have a role in the feast or fast signalling pathway. Adt2p – 34 kDa six transmembrane protein that catalyses the exchange of ADP and ATP across the yeast mitochondrial inner membrane. Conclusion We show that yeasts are flexible production organisms for a range of different membrane proteins. The yields are such that future structure-activity relationship studies can be initiated via reconstitution, crystallization for X-ray diffraction or NMR experiments.
Resumo:
Vaccination remains a key tool in the protection and eradication of diseases. However, the development of new safe and effective vaccines is not easy. Various live organism based vaccines currently licensed, exhibit high efficacy; however, this benefit is associated with risk, due to the adverse reactions found with these vaccines. Therefore, in the development of vaccines, the associated risk-benefit issues need to be addressed. Sub-unit proteins offer a much safer alternative; however, their efficacy is low. The use of adjuvanted systems have proven to enhance the immunogenicity of these sub-unit vaccines through protection (i.e. preventing degradation of the antigen in vivo) and enhanced targeting of these antigens to professional antigen-presenting cells. Understanding of the immunological implications of the related disease will enable validation for the design and development of potential adjuvant systems. Novel adjuvant research involves the combination of both pharmaceutical analysis accompanied by detailed immunological investigations, whereby, pharmaceutically designed adjuvants are driven by an increased understanding of mechanisms of adjuvant activity, largely facilitated by description of highly specific innate immune recognition of components usually associated with the presence of invading bacteria or virus. The majority of pharmaceutical based adjuvants currently being investigated are particulate based delivery systems, such as liposome formulations. As an adjuvant, liposomes have been shown to enhance immunity against the associated disease particularly when a cationic lipid is used within the formulation. In addition, the inclusion of components such as immunomodulators, further enhance immunity. Within this review, the use and application of effective adjuvants is investigated, with particular emphasis on liposomal-based systems. The mechanisms of adjuvant activity, analysis of complex immunological characteristics and formulation and delivery of these vaccines are considered.
Resumo:
Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes. Copyright © Informa Healthcare.
Resumo:
Recently identified genes located downstream (3') of the msmEF (transport encoding) gene cluster, msmGH, and located 5' of the structural genes for methanesulfonate monooxygenase (MSAMO) are described from Methylosulfonomonas methylovora. Sequence analysis of the derived polypeptide sequences encoded by these genes revealed a high degree of identity to ABC-type transporters. MsmE showed similarity to a putative periplasmic substrate binding protein, MsmF resembled an integral membraneassociated protein, and MsmG was a putative ATP-binding enzyme. MsmH was thought to be the cognate permease component of the sulfonate transport system. The close association of these putative transport genes to the MSAMO structural genes msmABCD suggested a role for these genes in transport of methanesulfonic acid (MSA) into M. methylovora. msmEFGH and msmABCD constituted two operons for the coordinated expression of MSAMO and the MSA transporter systems. Reverse-transcription-PCR analysis of msmABCD and msmEFGH revealed differential expression of these genes during growth on MSA and methanol. The msmEFGH operon was constitutively expressed, whereas MSA induced expression of msmABCD. A mutant defective in msmE had considerably slower growth rates than the wild type, thus supporting the proposed role of MsmE in the transport of MSA into M. methylovora.
Resumo:
Despite recent advances in the formulation of lyophilised rapid disintegrating tablets (RDTs), the inclusion of matrix supporting/disintegration enhancing agents has been limited to the use of saccharides and polyols. In this study, the feasibility of using amino acids as matrix forming agents in lyophilised RDTs was investigated. Twelve amino acids were chosen (alanine, arginine, threonine, glycine, cysteine, serine, histidine, lysine, valine, asparagine, glutamine and proline), and the suitability for freeze drying, mechanical properties and disintegration time after inclusion of the amino acids at varied concentration were studied. In addition, the porosity of the RDTs and wettability profile of the amino acids were investigated to understand the mechanisms of disintegration. The results suggest the suitability of these amino acids for the lyophilisation regime, as they displayed satisfactory safety margin between the glass transition and shelf temperature (-40 degrees C), except proline-based formulations. Moreover, the crystallisation behavior of alanine, glycine, cysteine and serine at high concentration increased the stability of the formulation. The characterisation of the RDTs suggests that high concentration of the amino acids is required to enhance the mechanical properties, whereas only optimum concentrations promote the disintegration. Moreover, wetting time of the amino acid and porosity of the tablet are the two factors that control the disintegration of RDTs.