3 resultados para Rh(II) catalyst

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Copper(II) acetylacetonate was anchored onto a hexagonal mesoporous silica (HMS) material using a two-step procedure: (i) functionalisation of the surface hydroxy groups with (3-aminopropyl)triethoxysilane (AMPTSi) and then (ii) anchoring of the copper(II) complex through Schiff condensation with free amine groups, using two different metal complex loadings. Upon the first step, nitrogen elemental analysis, XPS and DRIFT showed the presence of amine groups on the surface of the HMS material, and porosimetry indicated that the structure of the mesoporous material remained unchanged, although a slight decrease in surface area was observed. Atomic absorption, XPS and DRIFT showed that copper(II) acetylacetonate was anchored onto the amine-functionalised HMS by Schiff condensation between the free amine groups and the carbonyl groups of the copper(II) complex; using EPR an NO3 coordination sphere was proposed for the anchored copper(II) complex. The new [Cu(acac)2]-AMPTSi/HMS materials were tested in the aziridination of styrene at room temperature, using PhI=NTs as nitrogen source and acetonitrile as solvent. The styrene conversion and total TON of the heterogeneous phase reaction are higher than those of the same reaction catalysed in homogeneous phase by [Cu(acac)2]; nevertheless, the initial activity decreases and the reaction time increases due to substrate and product diffusion limitations. The heterogeneous catalyst showed a successive slight decrease in catalytic activity when reused for two more times. © Wiley-VCH Verlag GmbH & Co. KGaA, 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The utility of a hierarchically ordered nanoporous SBA-15 architecture, comprising 270 nm macropores and 5 nm mesopores (MM-SBA-15), for the catalytic aerobic selective oxidation of sterically challenging allylic alcohols is shown. Detailed bulk and surface characterization reveals that incorporation of complementary macropores into mesoporous SBA-15 enhances the dispersion of sub 2 nm Pd nanoparticles and thus their degree of surface oxidation. Kinetic profiling reveals a relationship between nanoparticle dispersion and oxidation rate, identifying surface PdO as the catalytically active phase. Hierarchical nanoporous Pd/MM-SBA-15 outperforms mesoporous analogues in allylic alcohol selective oxidation by (i) stabilizing PdO nanoparticles and (ii) dramatically improving in-pore diffusion and access to active sites by sesquiterpenoid substrates such as farnesol and phytol. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metal catalyzed hydrogenolysis of the biomass-derived THF-dimethanol to 1,2,6-hexanetriol using heterogeneous catalysts was investigated. Bimetallic Rh-Re catalysts (4 wt% Rh and a Re/Rh (mol. ratio of 0.5) on a silica support gave the best performance and 1,2,6-hexanetriol was obtained in 84% selectivity at 31% conversion (120 C, 80 bar, 4 h); the selectivity reaches a maximum of 92% at 80 C. The product distribution at prolonged reaction times or higher temperatures or both shows the formation of diols and mono-alcohols, indicating that the 1,2,6-hexanetriol is prone to subsequent hydrodeoxygenation reactions. Different silica supports were investigated and optimal results were obtained with an amorphous silica featuring an intermediate surface area and an average mesopore size of about 6 nm. TPR and XPS surface analysis support the presence of mixed Rh and Re particles. The redox Reδ+/ReTotal surface ratio correlates with the conversion in a volcano type dependency. Both gas phase as well as Rh200Re1OH cluster DFT calculations support an acid-metal bifunctional mechanism and explain the products distribution. © 2013 Elsevier B.V. All rights reserved.