7 resultados para Reverse Power flows
em Aston University Research Archive
Resumo:
Purpose: The purpose of this paper is to understand how reverse resource exchanges and resource dependencies are managed in the service supply chain (SSC) of returnable transport packaging (RTP). Design/methodology/approach: A single case study was conducted in the context of automotive logistics focusing on the RTP SSC. Data were collected through 16 interviews, primarily with managers of a logistics service provider (LSP) and document analysis of contractual agreements with key customers of the packaging service. Findings: Resource dependencies among actors in the SSC result from the importance of the RTP for the customer’s production processes, the competition among users for RTP and the negative implications of the temporary unavailability of RTP for customers and the LSP (in terms of service performance). Amongst other things, the LSP is dependent on its customers and third-party users (e.g. the customer’s suppliers) for the timely return of package resources. The role of inter-firm integration and collaboration, formal contracts as well as customers’ power and influence over third-party RTP users are stressed as key mechanisms for managing LSP’s resource dependencies. Research limitations/implications: A resource dependence theory (RDT) lens is used to analyse how reverse resource exchanges and associated resource dependencies in SSCs are managed, thus complementing the existing SSC literature emphasising the bi-directionality of resource flows. The study also extends the recent SSC literature stressing the role of contracting by empirically demonstrating how formal contracts can be mobilised to explicate resource dependencies and to specify, and regulate, reverse exchanges in the SSC. Practical implications: The research suggests that logistics providers can effectively manage their resource dependencies and regulate reverse exchanges in the SSC by deploying contractual governance mechanisms and leveraging their customers’ influence over third-party RTP users. Originality/value: The study is novel in its application of RDT, which enhances our understanding of the management of reverse exchanges and resource dependencies in SSCs.
Resumo:
Two-way power flow is nothing new and has been in practical use using line commutated converters for at least 50 years. With these types of converters, reversal of power flow can be achieved by increasing the firing angle of the devices beyond 90 degrees thus producing a negative DC voltage. Line commutated converters have several known disadvantages including: the direct current cannot be reversed, the power factor decreases when the firing angle increases and the harmonics are high on the line current. To tackle the above problems a forced commutated converter can be used. The power factor can be unity and the harmonics can be reduced. Many researchers have used PWM with different control techniques to serve the above purposes. In each converter arm, they used a forced commutated device with an antiparallel diode. Under the rectification mode of operation the current path is preponderantly through the diodes and under the inverter operation the current flows preponderantly through the forced commutated devices. Although their results were encouraging and gave a unity power factor with nearly sinusoidal current, the main disadvantage was that there were difficulties in controlling the power factor when the system is needed to operate at lagging or leading power factor. In this work, a new idea was introduced by connecting two GTOs antiparallel instead of a diode and a GTO. A single phase system using two GTO converters which are connected in series was built. One converter operates as a rectifier and the other converter operates as an inverter. In the case of the inversion mode and in each inverter arm one GTO is operated as a diode simply by switching it always on and the other antiparallel GTO is operated as a normal device to carry the inverter current. In case of the rectification mode, in each arm one GTO is always off and the other GTP is operated as a controlled device. The main advantage is that the system can be operated at lagging or leading power factor.
Resumo:
Desalination of groundwater is essential in arid regions that are remote from both seawater and freshwater resources. Desirable features of a groundwater desalination system include a high recovery ratio, operation from a sustainable energy source such as solar, and high water output per unit of energy and land. Here we propose a new system that uses a solar-Rankine cycle to drive reverse osmosis (RO). The working fluid such as steam is expanded against a power piston that actuates a pump piston which in turn pressurises the saline water thus passing it through RO membranes. A reciprocating crank mechanism is used to equalise the forces between the two pistons. The choice of batch mode in preference to continuous flow permits maximum energy recovery and minimal concentration polarisation in the vicinity of the RO membrane. This study analyses the sizing and efficiency of the crank mechanism, quantifies energy losses in the RO separation and predicts the overall performance. For example, a system using a field of linear Fresnel collectors occupying 1000 m2 of land and raising steam at 200 °C and 15.5 bar could desalinate 350 m3/day from saline water containing 5000 ppm of sodium chloride with a recovery ratio of 0.7.
Resumo:
The development of a system that integrates reverse osmosis (RO) with a horticultural greenhouse has been advanced through laboratory experiments. In this concept, intended for the inland desalination of brackish groundwater in dry areas, the RO concentrate will be reduced in volume by passing it through the evaporative cooling pads of the greenhouse. The system will be powered by solar photovoltaics (PV). Using a solar array simulator, we have verified that the RO can operate with varying power input and recovery rates to meet the water demands for irrigation and cooling of a greenhouse in north-west India. Cooling requires ventilation by a fan which has also been built, tested and optimised with a PV module outdoors. Results from the experiments with these two subsystems (RO and fan) are compared to theoretical predictions to reach conclusions about energy usage, sizing and cost. For example, the optimal sizing for the RO system is 0.12–1.3 m2 of PV module per m2 of membrane, depending on feed salinity. For the fan, the PV module area equals that of the fan aperture. The fan consumes <30 J of electrical energy per m3 of air moved which is 3 times less than that of standard fans. The specific energy consumption of the RO, at 1–2.3 kWh ?m-3, is comparable to that reported by others. Now that the subsystems have been verifi ed, the next step will be to integrate and test the whole system in the field.
Resumo:
This paper seeks to characterise the gendered and sexualised power relations of both female and male strip clubs, and to signal what this means for establishing positive definitions of female desire. It is argued that while it is not useful to present female strippers, or female patrons of male strip clubs as purely passive victims of male heterosexism within these venues, it is equally damaging to assume that these venues represent a whole-scale challenge to conventional oppressive gender and sexual relations for women. Some research has even suggested that both strippers and their patrons are engaged in a 'mutually exploitative' power relationship. Moreover, further empirical research documents key points where female dancers have perhaps wielded 'more' power over patrons at certain moments, and female dancers have highlighted feelings of empowerment and highlighted potential for gender and sexual relations which position women as passive to be subverted within stripping. However, such feelings are often temporally specific and are not applicable to all women in the strip industry. It may be particularly hard for these to manifest in women concentrated in the least economically-rewarding areas of the industry who have less 'power' to resist compromising their bodily boundaries. Furthermore, it is argued that women watching male strippers does little to reverse the 'male gaze', and nor does this male occupation carry as much negative social stigma with it as female stripping suffers. It is thus argued that the overwhelming picture, stemming largely from accounts of former dancers and from empirical studies of individual clubs, suggests these venues in fact do very little to challenge normative hetero-oppressive sexual scripts.
Resumo:
Wavelength bistability between 1245nm and 1295nm is demonstrated in a multi-section quantum-dot laser, controlled via the reverse bias on the saturable absorber. Continuous-wave or mode-locked regimes are achieved (output power up to 25mW and 17mW). © OSA/CLEO 2011.
Resumo:
For remote, semi-arid areas, brackish groundwater (BW) desalination powered by solar energy may serve as the most technically and economically viable means to alleviate the water stresses. For such systems, high recovery ratio is desired because of the technical and economical difficulties of concentrate management. It has been demonstrated that the current, conventional solar reverse osmosis (RO) desalination can be improved by 40–200 times by eliminating unnecessary energy losses. In this work, a batch-RO system that can be powered by a thermal Rankine cycle has been developed. By directly recycling high pressure concentrates and by using a linkage connection to provide increasing feed pressures, the batch-RO has been shown to achieve a 70% saving in energy consumption compared to a continuous single-stage RO system. Theoretical investigations on the mass transfer phenomena, including dispersion and concentration polarization, have been carried out to complement and to guide experimental efforts. The performance evaluation of the batch-RO system, named DesaLink, has been based on extensive experimental tests performed upon it. Operating DesaLink using compressed air as power supply under laboratory conditions, a freshwater production of approximately 300 litres per day was recorded with a concentration of around 350 ppm, whilst the feed water had a concentration range of 2500–4500 ppm; the corresponding linkage efficiency was around 40%. In the computational aspect, simulation models have been developed and validated for each of the subsystems of DesaLink, upon which an integrated model has been realised for the whole system. The models, both the subsystem ones and the integrated one, have been demonstrated to predict accurately the system performance under specific operational conditions. A simulation case study has been performed using the developed model. Simulation results indicate that the system can be expected to achieve a water production of 200 m3 per year by using a widely available evacuated tube solar collector having an area of only 2 m2. This freshwater production would satisfy the drinking water needs of 163 habitants in the Rajasthan region, the area for which the case study was performed.