36 resultados para Retrieval
em Aston University Research Archive
Resumo:
The retrieval of wind fields from scatterometer observations has traditionally been separated into two phases; local wind vector retrieval and ambiguity removal. Operationally, a forward model relating wind vector to backscatter is inverted, typically using look up tables, to retrieve up to four local wind vector solutions. A heuristic procedure, using numerical weather prediction forecast wind vectors and, often, some neighbourhood comparison is then used to select the correct solution. In this paper we develop a Bayesian method for wind field retrieval, and show how a direct local inverse model, relating backscatter to wind vector, improves the wind vector retrieval accuracy. We compare these results with the operational U.K. Meteorological Office retrievals, our own CMOD4 retrievals and a neural network based local forward model retrieval. We suggest that the neural network based inverse model, which is extremely fast to use, improves upon current forward models when used in a variational data assimilation scheme.
Resumo:
A conventional neural network approach to regression problems approximates the conditional mean of the output vector. For mappings which are multi-valued this approach breaks down, since the average of two solutions is not necessarily a valid solution. In this article mixture density networks, a principled method to model conditional probability density functions, are applied to retrieving Cartesian wind vector components from satellite scatterometer data. A hybrid mixture density network is implemented to incorporate prior knowledge of the predominantly bimodal function branches. An advantage of a fully probabilistic model is that more sophisticated and principled methods can be used to resolve ambiguities.
Resumo:
In many problems in spatial statistics it is necessary to infer a global problem solution by combining local models. A principled approach to this problem is to develop a global probabilistic model for the relationships between local variables and to use this as the prior in a Bayesian inference procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical Weather Prediction Models yields meteorologically convincing wind fields. We use neural networks to make local estimates of wind vector probabilities. The resulting inference problem cannot be solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind fields.
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
A conventional neural network approach to regression problems approximates the conditional mean of the output vector. For mappings which are multi-valued this approach breaks down, since the average of two solutions is not necessarily a valid solution. In this article mixture density networks, a principled method to model conditional probability density functions, are applied to retrieving Cartesian wind vector components from satellite scatterometer data. A hybrid mixture density network is implemented to incorporate prior knowledge of the predominantly bimodal function branches. An advantage of a fully probabilistic model is that more sophisticated and principled methods can be used to resolve ambiguities.
Resumo:
In many problems in spatial statistics it is necessary to infer a global problem solution by combining local models. A principled approach to this problem is to develop a global probabilistic model for the relationships between local variables and to use this as the prior in a Bayesian inference procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical Weather Prediction Models yields meteorologically convincing wind fields. We use neural networks to make local estimates of wind vector probabilities. The resulting inference problem cannot be solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind fields.
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
A chip shooter machine in printed circuit board (PCB) assembly has three movable mechanisms: an X-Y table carrying a PCB, a feeder carrier with several feeders holding components and a rotary turret with multiple assembly heads to pick up and place components. In order to get the minimal placement or assembly time for a PCB on the machine, all the components on the board should be placed in a perfect sequence, and the components should be set up on a right feeder, or feeders since two feeders can hold the same type of components, and additionally, the assembly head should retrieve or pick up a component from a right feeder. The entire problem is very complicated, and this paper presents a genetic algorithm approach to tackle it.
Resumo:
The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.
Resumo:
The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about 800 km, carrying a C-band scatterometer. A scatterometer measures the amount of backscatter microwave radiation reflected by small ripples on the ocean surface induced by sea-surface winds, and so provides instantaneous snap-shots of wind flow over large areas of the ocean surface, known as wind fields. Inherent in the physics of the observation process is an ambiguity in wind direction; the scatterometer cannot distinguish if the wind is blowing toward or away from the sensor device. This ambiguity implies that there is a one-to-many mapping between scatterometer data and wind direction. Current operational methods for wind field retrieval are based on the retrieval of wind vectors from satellite scatterometer data, followed by a disambiguation and filtering process that is reliant on numerical weather prediction models. The wind vectors are retrieved by the local inversion of a forward model, mapping scatterometer observations to wind vectors, and minimising a cost function in scatterometer measurement space. This thesis applies a pragmatic Bayesian solution to the problem. The likelihood is a combination of conditional probability distributions for the local wind vectors given the scatterometer data. The prior distribution is a vector Gaussian process that provides the geophysical consistency for the wind field. The wind vectors are retrieved directly from the scatterometer data by using mixture density networks, a principled method to model multi-modal conditional probability density functions. The complexity of the mapping and the structure of the conditional probability density function are investigated. A hybrid mixture density network, that incorporates the knowledge that the conditional probability distribution of the observation process is predominantly bi-modal, is developed. The optimal model, which generalises across a swathe of scatterometer readings, is better on key performance measures than the current operational model. Wind field retrieval is approached from three perspectives. The first is a non-autonomous method that confirms the validity of the model by retrieving the correct wind field 99% of the time from a test set of 575 wind fields. The second technique takes the maximum a posteriori probability wind field retrieved from the posterior distribution as the prediction. For the third technique, Markov Chain Monte Carlo (MCMC) techniques were employed to estimate the mass associated with significant modes of the posterior distribution, and make predictions based on the mode with the greatest mass associated with it. General methods for sampling from multi-modal distributions were benchmarked against a specific MCMC transition kernel designed for this problem. It was shown that the general methods were unsuitable for this application due to computational expense. On a test set of 100 wind fields the MAP estimate correctly retrieved 72 wind fields, whilst the sampling method correctly retrieved 73 wind fields.
Resumo:
Owing to the rise in the volume of literature, problems arise in the retrieval of required information. Various retrieval strategies have been proposed, but most of that are not flexible enough for their users. Specifically, most of these systems assume that users know exactly what they are looking for before approaching the system, and that users are able to precisely express their information needs according to l aid- down specifications. There has, however, been described a retrieval program THOMAS which aims at satisfying incompletely- defined user needs through a man- machine dialogue which does not require any rigid queries. Unlike most systems, Thomas attempts to satisfy the user's needs from a model which it builds of the user's area of interest. This model is a subset of the program's "world model" - a database in the form of a network where the nodes represent concepts since various concepts have various degrees of similarities and associations, this thesis contends that instead of models which assume equal levels of similarities between concepts, the links between the concepts should have values assigned to them to indicate the degree of similarity between the concepts. Furthermore, the world model of the system should be structured such that concepts which are related to one another be clustered together, so that a user- interaction would involve only the relevant clusters rather than the entire database such clusters being determined by the system, not the user. This thesis also attempts to link the design work with the current notion in psychology centred on the use of the computer to simulate human cognitive processes. In this case, an attempt has been made to model a dialogue between two people - the information seeker and the information expert. The system, called Thomas-II, has been implemented and found to require less effort from the user than Thomas.