6 resultados para Retaining walls.

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although generally regarded as a neurotransmitter, dopamine is also known to be secreted by the kidney whereby it promotes sodium excretion in its role as a natriuretic honnone. Peripheral dopamine may be formed by two alternative pathways; the decarboxylation of circulating L-Dopa by L-aromatic amino acid decarboxylase (LAAAD), and the desulphation of dopamine sulphate by arylsulphatase A (ASA), the latter being poorly represented in the literature. In many conditions and diseases with which sodium retention is associated, a reduced urinary excretion of dopamine has been noted implicating the involvement of dopamine in the maintenance of sodium homeostasis.This study investigates renal dopamine production via the desulphation of dopamine sulphate in a sample cohort during normal unregulated dietary sodium intake and following a low sodium regimen. After dietary salt restriction urinary dopamine sulphate levels were significantly increased, indicating that dopamine sulphate is indeed a physiological reservoir of active free dopamine, the necessity for which is reduced during self depletion. This confirmed the dopamine/dopamine sulphate pathway as one which may be relevant to the maintenance of sodium homeostasis. The activity of urinary ASA was investigated in diabetes mellitus as an example of a sodium-retaining state, and compared with that in a matched normal control group. A decreased ASA activity was anticipated, given the blunted dopamine excretion observed in many sodium-retaining states, however an unexpected increase in activity in the diabetic group was observed. Enzyme kinetic analysis of ASA showed that this was not due to the existence of an isoform having an altered affinity for dopamine sulphate. This rather paradoxical situation, that urinary-dopamine is decreased while ASA activity is increased, may be explained by the sequestering of free dopamine by autoxidation to 6-hydroxydopamine as has been hypothesised recently to occur in diabetes mellitus. To confirm the homogeneity of ASA in the normal and diabetic groups, four amplicons spanning the 3637bp intronic and exonic regions of the gene were generated by PCR. These were sequence utilising a fluorescent-dye terminator reaction using the forward PCR primer as sequencing primer. Although single nucleotide polymorphisms were observed between the two groups these occurred either in intronic regions or, when exonic, generated silent mutations, supporting the enzyme kinetic data. The expression of ASA was investigated to determine the basis of the increased activity observed in diabetes mellitus. Although a validated comparative RT-PCR assay was developed for amplification of arsa transcripts from fresh blood samples, expression analysis from archived paraffin-embedded renal tissue was complicated by the low yield and degradation of unprotected mRNA. Suggestions for the development of this work using renal cell-culture are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model is presented for steady fluid flow across microvessel walls through a serial pathway consisting of the endothelial surface glycocalyx and the intercellular cleft between adjacent endothelial cells, with junction strands and their discontinuous gaps. The three-dimensional flow through the pathway from the vessel lumen to the tissue space has been computed numerically based on a Brinkman equation with appropriate values of the Darcy permeability. The predicted values of the hydraulic conductivity Lp, defined as the ratio of the flow rate per unit surface area of the vessel wall to the pressure drop across it, are close to experimental measurements for rat mesentery microvessels. If the values of the Darcy permeability for the surface glycocalyx are determined based on the regular arrangements of fibres with 6nm radius and 8nm spacing proposed recently from the detailed structural measurements, then the present study suggests that the surface glycocalyx could be much less resistant to flow compared to previous estimates by the one-dimensional flow analyses, and the intercellular cleft could be a major determinant of the hydraulic conductivity of the microvessel wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel rotor structure for high-speed interior permanent magnet motors to overcome huge centrifugal forces under high-speed operation. Instead of the conventional axial stacking of silicon-steel laminations, the retaining shield rotor is inter-stacked by high-strength stainless-steel plates to enhance the rotor strength against the huge centrifugal force. Both mechanical characteristics and electromagnetic behaviors of the retaining shield rotor are analyzed using finite-element method in this paper. Prototypes and experimental results are demonstrated to evaluate the performance. The analysis and test results show that the proposed retaining shield rotor could effectively enhance the rotor strength without a significant impact on the electromagnetic performance, while some design constraints should be compromised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permanent-magnet (PM) synchronous machines (PMSMs) can provide excellent performance in terms of torque density, energy efficiency, and controllability. However, PMs on the rotor are prone to centrifugal force, which may break their physical integrity, particularly at high-speed operation. Typically, PMs are bound with carbon fiber or retained by alloy sleeves on the rotor surface. This paper is concerned with the design of a rotor retaining sleeve for a 1.12-MW 18-kr/min PM machine; its electromagnetic performance is investigated by the 2-D finite-element method (FEM). Theoretical and numerical analyses of the rotor stress are carried out. For the carbon fiber protective measure, the stresses of three PM configurations and three pole filler materials are compared in terms of operating temperature, rotor speed, retaining sleeve thickness, and interference fit. Then, a new hybrid protective measure is proposed and analyzed by the 2-D FEM for operational speeds up to 22 kr/min (1.2 times the rated speed). The rotor losses and machine temperatures with the carbon fiber retaining sleeve and the hybrid retaining sleeve are compared, and the sleeve design is refined. Two rotors using both designs are prototyped and experimentally tested to validate the effectiveness of the developed techniques for PM machines. The developed retaining sleeve makes it possible to operate megawatt PM machines at high speeds of 22 kr/min. This opens doors for many high-power high-speed applications such as turbo-generator, aerospace, and submarine motor drives.